This question has Statement $1$ and Statement $2$. Of the four choices given after the Statements, choose the one that best describes the two Statements.
If two springs $S_1$ and $S_2$ of force constants $k_1$ and $k_2$, respectively, are stretched by the same force, it is found that more work is done on spring $S_1$ than on spring $S_2$.
STATEMENT 1 : If stretched by the same amount work
done on $S_1$, Work done on $S_1$ is more than $S_2$
STATEMENT2: $k_1 < k_2$
Statement $1$ is true, Statement $2$ is true, Statement $2$ is not the correct explanation for Statement $1$
Statement $1$ is false, Statement $2$ is true
Statement $1$ is true, Statement $2$ is false
Statement $1$ is true, Statement $2$ is true, Statement $2$ is the correct explanation for Statement $1$
Two identical blocks $A$ and $B$ each of mass $m$ resting on the smooth horizontal floor are connected by a light spring of natural length $L$ and spring constant $K$. A third block $C$ of mass $m$ moving with a speed $v$ along the line joining $A$ and $B$ collides with $A$.The maximum compression in the spring is
$A$ block of mass $m$ moving with a velocity $v_0$ on a smooth horizontal surface strikes and compresses a spring of stiffness $k$ till mass comes to rest as shown in the figure. This phenomenon is observed by two observers:
$A$: standing on the horizontal surface
$B$: standing on the block To an observer
$A$, the work done by the normal reaction $N$ between the block and the spring on the block is
A smooth semicircular tube $AB$ of radius $R$ is fixed in a verticle plane and contain a heavy flexible chain of length $\pi R$ . Find the velocity $v$ with which it will emerge from the open end $'B'$ of' tube, when slightly displaced
$A$ block of mass $m$ moving with a velocity $v_0$ on a smooth horizontal surface strikes and compresses a spring of stiffness $k$ till mass comes to rest as shown in the figure. This phenomenon is observed by two observers:
$A$: standing on the horizontal surface
$B$: standing on the block
To an observer $B$, when the block is compressing the spring
A spring of force constant $800\, N/m$ has an extension of $5\,cm$. The work done in extending it from $ 5\,cm$ to $15 \,cm$ is ............. $\mathrm{J}$