Three charges are placed at the vertices of an equilateral triangle of side ‘$a$’ as shown in the following figure. The force experienced by the charge placed at the vertex $A$ in a direction normal to $BC$ is
${Q^2}/(4\pi {\varepsilon _0}{a^2})$
$ - {Q^2}/(4\pi {\varepsilon _0}{a^2})$
Zero
${Q^2}/(2\pi {\varepsilon _0}{a^2})$
The distance between charges $5 \times {10^{ - 11}}\,C$ and $ - 2.7 \times {10^{ - 11}}\,C$ is $0.2\, m$. The distance at which a third charge should be placed in order that it will not experience any force along the line joining the two charges is......$m$
Two identically charged pith balls are suspended from the some point by two massless identical threads density of each ball is $\rho $. If system is immersed in a medium of density $\sigma $, balls remain undeflected, then the dielectric constant of medium is
When ${10^{14}}$ electrons are removed from a neutral metal sphere, the charge on the sphere becomes......$\mu C$
As shown in the figure. a configuration of two equal point charges $\left( q _0=+2 \mu C \right)$ is placed on an inclined plane. Mass of each point charge is $20\,g$. Assume that there is no friction between charge and plane. For the system of two point charges to be in equilibrium (at rest) the height $h = x \times 10^{-3}\,m$ The value of $x$ is $..........$.(Take $\left.\frac{1}{4 \pi \varepsilon_0}=9 \times 10^9\,Nm ^2 C ^{-2}, g=10\,ms ^{-1}\right)$
Write value of Coulombian constant $k$ in $SI$ unit.