Three coins are tossed once. Let $A$ denote the event ' three heads show ', $B$ denote the event ' two heads and one tail show ' , $C$ denote the event ' three tails show and $D$ denote the event 'a head shows on the first coin '. Which events are mutually exclusive ?

Vedclass pdf generator app on play store
Vedclass iOS app on app store

When three coins are tossed, the sample space is given by

$S =\{ HHH ,\, HHT , \,HTH ,\, HTT , \,THH ,\, THT , \,TTH , \,TTT \}$

Accordingly,

$A=\{H H H\}$

$B =\{ HHT ,\, HTH ,\, THH \}$

$C =\{ TTT \}$

$D =\{ HHH , \,HHT , \,HTH , \,HTT \}$

We now observe that

$A \cap B$ $=\phi, A \cap C$ $=\phi, A \cap D$ $=\{H H H\} \neq \phi$

$B \cap C=\phi, B \cap D$ $=\{H H T,\, H T H\} \neq \phi$

$C \cap D=\phi$

Event $A$ and $B$ ; event $A$ and $C$; event $B$ and $C$; and event $C$ and $D$ are all mutually exclusive.

Similar Questions

Three coins are tossed. Describe Three events which are mutually exclusive but not exhaustive.

Two integers $\mathrm{x}$ and $\mathrm{y}$ are chosen with replacement from the set $\{0,1,2,3, \ldots ., 10\}$. Then the probability that $|x-y|>5$ is:

  • [JEE MAIN 2024]

Two dice are thrown. The events $A,\, B$ and $C$ are as follows:

$A:$ getting an even number on the first die.

$B:$ getting an odd number on the first die.

$C:$ getting the sum of the numbers on the dice $\leq 5$

State true or false $:$ (give reason for your answer)

Statement : $A$ and $B^{\prime }$ are mutually exclusive

A card is selected from a pack of $52$ cards. Calculate the probability that the card is an ace of spades.

Two dice are thrown simultaneously. The probability of getting the sum $2$ or $8$ or $12$  is