जाँच कीजिए कि निम्न प्रायिकताएँ $P ( A )$ और $P ( B )$ युक्ति संगत ( $consistently )$ परिभाषित की गई हैं
$P ( A )=0.5, P ( B )=0.4, P ( A \cup B )=0.8$
$P ( A )=0.5$, $P ( B )=0.4$, $P (A \cup B)=0.8$
It is known that if $E$ and $F$ are two events such that $E \subset F,$ then $P ( E ) \leq P ( F )$
Here, it is seen that $P (A \cup B)> P ( A )$ and $P (A \cup B)> P ( B )$
Hence, $P(A)$ and $P(B)$ are consistently defined.
यदि $A$ और $B$ दो घटनायें हैं, तब $P(\bar A \cap B) = $
एक न्याय संगत पासे $(fair\,die)$ के फलकों पर संख्याएँ $1,2,3$, $4,5,6$ लिखी हुई हैं। दो व्यक्ति $A , B$ इस पासे को बारी बारी फेंकते हैं और इस खेल में प्रथम बारी $A$ की होती है। जीतने वाला व्यक्ति वह है जिसके पासे के फेंकने पर मिली संख्या उसके. प्रतिद्वंदी द्वारा पिछली बार पासा फेंकने पर मिली संख्या से विभिन्न हो। $B$ के जीतने की प्रायिकता का मान होगा :
एक सिक्का दो बार उछाला जाता है। यदि घटनाएँ $A$ तथा $B$ निम्न प्रकार परिभाषित हो : $A =$ पहली उछाल पर शीर्ष, $B = $ दूसरी उछाल पर शीर्ष, तो $(A \cup B)$ की प्रायिकता है
एक छात्रावास में $60 \%$ विद्यार्थी हींदी का, $40 \%$ अंग्रेज़ी का और $20 \%$ दोनों अखबार पढ़ते हैं। एक छात्रा को यादृच्छ्या चुना जाता है।
प्रायिकता ज्ञात कीजिए कि वह न तो हींदी और न ही अंग्रेज़ी का अखबार पढती है।
घटनाओं $A$ तथा $B$ में से कम से कम एक घटना के घटित होने की प्रायिकता $3/5$ है। यदि $A$ तथा $B$ के एक साथ होने की प्रायिकता $1/5$ है, तब $P(A') + P(B')$ का मान है