Two bodies, a ring and a solid cylinder of same material are rolling down without slipping an inclined plane. The radii of the bodies are same. The ratio of velocity of the centre of mass at the bottom of the inclined plane of the ring to that of the cylinder is $\frac{\sqrt{x}}{2}$. Then, the value of $x$ is .... .

  • [JEE MAIN 2021]
  • A

    $1$

  • B

    $3$

  • C

    $9$

  • D

    $10$

Similar Questions

Two uniform circular discs are rotating independently in the same direction around their common axis passing through their centres. The moment of inertia and angular velocity of the first disc are $0.1 \;kg - m ^{2}$ and $10\; rad \,s^{-1}$ respectively while those for the second one are $0.2 \;kg - m ^{2}$ and $5\; rad \,s ^{-1}$ respectively. At some instant they get stuck together and start rotating as a single system about their common axis with some angular speed. The Kinetic energy of the combined system is ...........$J$

  • [JEE MAIN 2020]

A disc of radius $2\; \mathrm{m}$ and mass $100\; \mathrm{kg}$ rolls on a horizontal floor. Its centre of mass has speed of $20\; \mathrm{cm} / \mathrm{s} .$ How much work is needed to stop it?

  • [NEET 2019]

If the angular momentum of a rotating body is increased by $200\ \%$, then its kinetic energy of rotation will be increased by .......... $\%$

A cord is wound round the circumference of wheel of radius $r$. The axis of the wheel is horizontal and moment of inertia about it is $I$. A weight $mg$ is attached to the end of the cord and falls from rest. After falling through a distance $h$, the angular velocity of the wheel will be

A student of mass $M$ is $1.5 \,m$ tall and has her centre of mass $1 \,m$ above ground when standing straight. She wants to jump up vertically. To do so. she bends her knees so that her centre of mass is lowered by $0.2 \,m$ and then pushes the ground by a constant force F. As a result, she jumps up such that the maximum height of her feet is $0.3 \,m$ above ground. The ratio $F / Mg$ is

  • [KVPY 2021]