If $g_E$ and $g_M$ are the accelerations due to gravity on the surfaces of the earth and the moon respectively and if Millikan's oil drop experiment could be performed on the two surfaces, one will find the ratio (electronic charge on the moon/electronic charge on the earth) to be

  • [AIEEE 2007]
  • A

    $1$

  • B

    $0$

  • C

    $\frac{ g _{ E }}{ g _{ M }}$

  • D

    $\frac{g_{M}}{g_{E}}$

Similar Questions

The charges on two sphere are $+7\,\mu C$ and $-5\,\mu C$ respectively. They experience a force $F$. If each of them is given and additional charge of $-2\,\mu C$, the new force of attraction will be

The ratio of electrostatic and gravitational forces acting between electron and proton separated by a distance $5 \times {10^{ - 11}}\,m,$ will be (Charge on electron $=$ $1.6 \times 10^{-19}$ $C$, mass of electron = $ 9.1 \times 10^{-31}$ $kg$, mass of proton = $1.6 \times {10^{ - 27}}\,kg,$ $\,G = 6.7 \times {10^{ - 11}}\,N{m^2}/k{g^2})$

Two spherical conductors $B$ and $C$ having equal radii and carrying equal charges in them repel each other with a force $F$ when kept apart at some distance. A third spherical conductor having same radius as that of $B$ but uncharged is brought in contact with $B$, then brought in contact with $C$ and finally removed away from both. The new force of repulsion between $B$ and $C$ is

  • [AIEEE 2004]

A negatively charged particle $p$ is placed, initially at rest, in $a$ constant, uniform gravitational field and $a$ constant, uniform electric field as shown in the diagram. What qualitatively, is the shape of the trajectory of the electron?

Two point charges $3 \times 10^{-6} \,C$ and  $8 \times 10^{-6} \, C$ repel each other by a force of  $6 \times 10^{-3} \, N$. If each of them is given an additional charge $-6 \times 10^{-6} \, C$, the force between them will be