Two circles of radii $4$ cms $\&\,\, 1\,\, cm$ touch each other externally and $\theta$ is the angle contained by their direct common tangents. Then $sin \theta =$

  • A

    $\frac{{{\rm{24}}}}{{{\rm{25}}}}$

  • B

    $\frac{{{\rm{12}}}}{{{\rm{25}}}}$

  • C

    $\frac{{\rm{3}}}{{\rm{4}}}$

  • D

    none

Similar Questions

The equation of the circle which passes through the origin, has its centre on the line $x + y = 4$ and cuts the circle ${x^2} + {y^2} - 4x + 2y + 4 = 0$ orthogonally, is

Let a circle $C_1 \equiv  x^2 + y^2 - 4x + 6y + 1 = 0$ and circle $C_2$ is such that it's centre is image of centre of $C_1$ about $x-$axis and radius of $C_2$ is equal to radius of $C_1$, then area of $C_1$ which is not common with $C_2$ is -

One of the limit point of the coaxial system of circles containing ${x^2} + {y^2} - 6x - 6y + 4 = 0$, ${x^2} + {y^2} - 2x$ $ - 4y + 3 = 0$ is

Coordinates of the centre of the circle which bisects the circumferences of the circles

$x^2 + y^2 = 1 ; x^2 + y^2 + 2x - 3 = 0$ and $x^2 + y^2 + 2y - 3 = 0$ is

Two circles whose radii are equal to $4$ and $8$ intersects at right angles. The length of  their common chord is:-