- Home
- Standard 11
- Mathematics
Two circles of radii $4$ cms $\&\,\, 1\,\, cm$ touch each other externally and $\theta$ is the angle contained by their direct common tangents. Then $sin \theta =$
$\frac{{{\rm{24}}}}{{{\rm{25}}}}$
$\frac{{{\rm{12}}}}{{{\rm{25}}}}$
$\frac{{\rm{3}}}{{\rm{4}}}$
none
Solution
Let the two circles, $C(Q, 4)$ and $C(R, 1)$ touch externally. So the distance $Q R$ (distance between centers) $=5$
Let $A B \& C D$ be the two common tangents meet at $P$. So extending the line of centers, $Q R$, it will also meet at $P$.
Join $A Q$ and $B R ; \angle Q A P=\angle R B P=90^{\circ}$
[At point of contact, radius and tangent perpendicular to each other].
So of the above, we have two right triangles, $Q A P$ and $R B P$ As $\angle Q A P=\angle R B P=90^{\circ}$
$\angle A P Q=\angle B P R[$ Common $]$
So the two triangles, $A P Q$ and $B P R$ are similar [AA similarity]
Hence,
$\frac{P Q}{A Q}=\frac{P R}{B R}$
$\Rightarrow \frac{Q R+P R}{A Q}=\frac{P R}{B R}$
$\Rightarrow \frac{5+x}{4}=\frac{x}{1}$
$\Rightarrow x=\frac{5}{3}$
$\Rightarrow P R=\frac{5}{3}$
So taking $\angle B P R=\theta$,
$\sin \theta=\frac{B R}{P R}=\frac{1}{\frac{5}{3}}=\frac{3}{5}$
So the angle between two tangents $=2 \theta$
Thus,
$\sin 2 \theta=2 \sin \theta \cos \theta=2 \times \frac{3}{5} \times \sqrt{1-\sin ^{2} \theta}=2 \times \frac{3}{5} \times \frac{4}{5}=\frac{24}{25}$
Hence, $\sin \theta=\frac{24}{25}$