For the two circles $x^2 + y^2 = 16$ and $x^2 + y^2 -2y = 0,$ there is/are

  • [JEE MAIN 2014]
  • A

    one pair of common tangents

  • B

    two pair of common tangents

  • C

    three pair of common tangents

  • D

    no common tangent

Similar Questions

Let $C$ be a circle passing through the points $A (2,-1)$ and $B (3,4)$. The line segment $AB$ is not a diameter of $C$. If $r$ is the radius of $C$ and its centre lies on the circle $(x-5)^{2}+(y-1)^{2}=\frac{13}{2}$, then $r^{2}$ is equal to

  • [JEE MAIN 2022]

The two circles ${x^2} + {y^2} - 2x - 3 = 0$ and ${x^2} + {y^2} - 4x - 6y - 8 = 0$ are such that

For the given circles ${x^2} + {y^2} - 6x - 2y + 1 = 0$ and ${x^2} + {y^2} + 2x - 8y + 13 = 0$, which of the following is true

The point $(2, 3)$ is a limiting point of a coaxial system of circles of which ${x^2} + {y^2} = 9$ is a member. The co-ordinates of the other limiting point is given by

If one common tangent of the two circles $x^2 + y^2 = 4$ and ${x^2} + {\left( {y - 3} \right)^2} = \lambda ,\lambda  > 0$ passes through the point $\left( {\sqrt 3 ,1} \right)$, then possible value of  $\lambda$ is