दो ${r_A}$ और ${r_B}$ त्रिज्याओं $({r_B} > {r_A})$ के संकेन्द्रीय पतले चालक गोलीय कोशों (spherical shells) $A$ और $B$ को ${Q_A}$ और $ - {Q_B}$ $(|{Q_B}|\, > \,|{Q_A}|)$ आवेश दिया गया है। केन्द्र से गुजरती हुयी रेखा के साथ-साथ (along) विद्युत क्षेत्र किस ग्राफ से अनुरुप परिवर्तित होगा

  • [AIIMS 2005]
  • A
    116-a17
  • B
    116-b17
  • C
    116-c17
  • D
    116-d17

Similar Questions

दो अनन्त लम्बाई के समान्तर तार जिन पर रेखीय आवेश घनत्व क्रमश: ${\lambda _1}$ और ${\lambda _2}$ हैं, $R$ मीटर की दूरी पर रखे हैं। उनमें से किसी एक की एकांक लम्बाई पर बल होगा $\left( {K = \frac{1}{{4\pi {\varepsilon _0}}}} \right)$

यदि पृथक्कृत कुचालक गोले की त्रिज्या $R$ तथा आवेश घनत्व $\rho $ है। गोले के केन्द्र से $r$ दूरी $(r\; < \;R)$ पर विद्युत क्षेत्र होगा

एक $‘R’$ त्रिज्या के ठोस गोले पर एकसमान रूप से आवेश वितरित है। विद्युत क्षेत्र $‘E’$ तथा गोले के केन्द्र से दूरी $‘r’$ के बीच क्या सम्बन्ध है ( r , R से कम है )

दो अनंत लम्बाई की समानान्तर चालक पट्टिकायें (प्लेट्स) जिनके सतही आवेश घनत्व क्रमश : $ + \sigma $ और $ - \sigma $ हैं, एक थोड़ी दूरी के अंतराल पर रखी हैं। इन पट्टिकाओं के बीच का माध्यम निर्वात है। अगर निर्वात का परावैद्युतांक ${\varepsilon _0}$ है, तो पट्टिकाओं के बीच विद्युत क्षेत्र का मान है

  • [AIIMS 2005]

$(a)$ दर्शाइए कि आवेशित पृष्ठ के एक पार्श्व से दूसरे पार्श्व पर स्थिरवैध्यूत क्षेत्र के अभिलंब घटक में असांतत्य होता है, जिसे

$\left( E _{2}- E _{1}\right) \cdot \hat{ n }=\frac{\sigma}{\varepsilon_{\rho}}$

द्वारा व्यक्त किया जाता है। जहाँ $\hat{ n }$ एक बिदु पर पृष्ठ के अभिलंब एकांक सदिश है तथा $\sigma$ उस बिंदु पर पृष्ठ आवेश घनत्व है ( $\hat{ n }$ की दिशा पार्श्व $1$ से पार्श्व $2$ की ओर है।) अत: दर्शाइए कि चालक के ठीक बाहर विध्यूत क्षेत्र $\sigma \hat{ n } / \varepsilon_{0}$ है।

$(b)$ दर्शाइए कि आवेशित पृष्ठ के एक पार्श्व से दूसरे पार्श्व पर स्थिरवैध्यूत क्षेत्र का स्पर्शीय घटक संतत है।