दो भिन्न बहुपद $f(x)$ और $g(x)$ इस प्रकार हैं: $f(x)=x^2+a x+2 ; \quad g(x)=x^2+2 x+a \text {. }$
यदि समीकरण $f(x)=0, g(x)=0$ का एक शून्यक साझा हो तो, समीकरण $f(x)+g(x)=0$ के शून्यकों का योग होगा :
$-\frac{1}{2}$
$0$
$\frac{1}{2}$
$1$
समीकरण ${x^4} - 2{x^3} + x = 380$ के मूल हैं
पूर्णांक " $k$ ", जिसके लिए असमिका $x ^{2}-2(3 k -1) x +8 k ^{2}-7>0, R$ में प्रत्येक $x$ के लिए, मान्य है, है
यदि किसी धनपूर्णांक $n$ के लिए, द्विघाती समीकरण
$x(x+1)+(x+1)(x+2)+\ldots+(x+\overline{n-1})(x+n)=10 n$
के दो क्रमिक पूर्णांकीय हल है, तो $n$ बराबर है :
माना $\alpha$ तथा $\beta$ समीकरण $x^{2}-x-1=0$ के मूल हैं। यदि $p _{ k }=(\alpha)^{ k }+(\beta)^{ k }, k \geq 1$, तो निम्न में से कौन सा एक कथन सत्य नहीं है ?
समीकरण $|x{|^2}$-$3|x| + 2 = 0$ के वास्तविक हलों की संख्या है