The equation $x^2-4 x+[x]+3=x[x]$, where $[x]$ denotes the greatest integer function, has:
exactly two solutions in $(-\infty, \infty)$
no solution
a unique solution in $(-\infty, 1)$
a unique solution in $(-\infty, \infty)$
The integer $'k'$, for which the inequality $x^{2}-2(3 k-1) x+8 k^{2}-7>0$ is valid for every $x$ in $R ,$ is
Let $a, b, c$ be non-zero real numbers such that $a+b+c=0$, let $q=a^2+b^2+c^2$ and $r=a^4+b^4+c^4$. Then,
Let $f: R \rightarrow R$ be the function $f(x)=\left(x-a_1\right)\left(x-a_2\right)$ $+\left(x-a_2\right)\left(x-a_3\right)+\left(x-a_3\right)\left(x-a_1\right)$ with $a_1, a_2, a_3 \in R$.Then, $f(x) \geq 0$ if and only if
The number of pairs of reals $(x, y)$ such that $x=x^2+y^2$ and $y=2 x y$ is
The sum of the roots of the equation, ${x^2}\, + \,\left| {2x - 3} \right|\, - \,4\, = \,0,$ is