The equation $x^2-4 x+[x]+3=x[x]$, where $[x]$ denotes the greatest integer function, has:
exactly two solutions in $(-\infty, \infty)$
no solution
a unique solution in $(-\infty, 1)$
a unique solution in $(-\infty, \infty)$
If $\alpha , \beta$ and $\gamma$ are the roots of ${x^3} + 8 = 0$, then the equation whose roots are ${\alpha ^2},{\beta ^2}$ and ${\gamma ^2}$ is
If $\alpha ,\beta$ are the roots of $x^2 -ax + b = 0$ and if $\alpha^n + \beta^n = V_n$, then -
The number of solutions of the equation $\log _{(x+1)}\left(2 x^{2}+7 x+5\right)+\log _{(2 x+5)}(x+1)^{2}-4=0, x\,>\,0$, is $....$
The number of real solutions of the equation $\mathrm{x}|\mathrm{x}+5|+2|\mathrm{x}+7|-2=0$ is .....................
Suppose $m, n$ are positive integers such that $6^m+2^{m+n} \cdot 3^w+2^n=332$. The value of the expression $m^2+m n+n^2$ is