$\vec{A}$ और $\vec{B}$ दो सदिश राशियाँ हैं, जहाँ $\vec{A}=a \hat{\imath}$ और $\vec{B}=a(\cos \omega t \hat{\imath}+\sin \omega t \hat{\jmath})$ हैं। यहाँ $a$ एक स्थिरांक (constant) है और $\omega=\pi / 6 rad s ^{-1}$ है। यदि $|\vec{A}+\vec{B}|=\sqrt{3}|\vec{A}-\vec{B}|$ प्रथम बार समय $t=\tau$ पर होता है, तो $\tau$ का मान, सेकेंडों (seconds) में, .......... है।

  • [IIT 2018]
  • A

    $1$

  • B

    $2$

  • C

    $5$

  • D

    $6$

Similar Questions

दो बलों $\overrightarrow{ P }$ और $\overrightarrow{ Q }$ को जोड़कर मिलने वाला बल $\overrightarrow{ R }$ ऐसा है कि $|\overrightarrow{ R }|=|\overrightarrow{ P }|$. यदि $2 \overrightarrow{ P }$ और $\overrightarrow{ Q }$ को जोड़कर मिलने वाला परिणामी बल $\overrightarrow{ Q }$ से $\theta$ कोण (डिग्री में) बनाता हो तो $\theta$ का मान होगा |

  • [JEE MAIN 2020]

चित्र में सदिशों $\overrightarrow{ OA }, \overrightarrow{ OB }$ तथा $\overrightarrow{ OC }$ के परिमाण समान है। $x$ - अक्ष के साथ $\overrightarrow{ OA }+\overrightarrow{ OB }-\overrightarrow{ OC }$ की दिशा होगी।

  • [JEE MAIN 2021]

माना दो अशून्य सदिशों $\mathop A\limits^ \to $ व $\mathop B\limits^ \to $ के बीच कोण $120^°$ है तथा इनका परिणामी $\mathop C\limits^ \to $ है तो

यदि सदिशों $P, Q$ तथा $R$ के परिमाण क्रमश: $5, 12$ तथा $13$ इकाई हैं तथा $\mathop P\limits^ \to + \mathop Q\limits^ \to = \mathop R\limits^ \to $ है तो $Q$ तथा $R$ के बीच कोण है

$10\, N$ के पाँच एकसमान बल एक बिन्दु पर आरोपित किये गये हैं तथा यह सभी एक ही तल में हैं। यदि उनके मध्य कोण बराबर हों तो इनका परिणामी ............... $\mathrm{N}$ होगा