$\vec{A}$ और $\vec{B}$ दो सदिश राशियाँ हैं, जहाँ $\vec{A}=a \hat{\imath}$ और $\vec{B}=a(\cos \omega t \hat{\imath}+\sin \omega t \hat{\jmath})$ हैं। यहाँ $a$ एक स्थिरांक (constant) है और $\omega=\pi / 6 rad s ^{-1}$ है। यदि $|\vec{A}+\vec{B}|=\sqrt{3}|\vec{A}-\vec{B}|$ प्रथम बार समय $t=\tau$ पर होता है, तो $\tau$ का मान, सेकेंडों (seconds) में, .......... है।

  • [IIT 2018]
  • A

    $1$

  • B

    $2$

  • C

    $5$

  • D

    $6$

Similar Questions

दो बलों $3P$ एवं $2P$ का परिणामी $R $ है। यदि प्रथम बल को दोगुना कर दिया जाये तो परिणामी भी दोगुना हो जाता है। दोनों बलों के बीच कोण ........... $^o$ है

दिया है $a + b + c + d = 0$, नीचे दिए गए कथनों में से कौन-सा सही है

$(a)$ $a , b , c$ तथा $d$ में से प्रत्येक शून्य सदिश है,

$(b)$ $( a + c )$ का परिमाण $( b + d )$ के परिमाण के बराबर है, नहीं हो सकता

$(d)$ यदि $a$ तथा $d$ सरेखीय नहीं हैं तो $b + c$ अवश्य ही $a$ तथा $d$ के समतल में होगा, और यह $a$ तथा $d$ के अनुदिश होगा यद् वे सरंखीय हैं ।

कोई साइकिल सवार किसी वृत्तीय पार्क के केंद्र $O$ से चलना शुरू करता है तथा पार्क के किनारे $P$ पर पहुँचता है। पुनः वह पार्क की परिधि के अनुदिश साइकिल चलाता हुआ $QO$ के रास्ते ( जैसा चित्र में दिखाया गया है) केंद्र पर वापस आ जाता है । पार्क की त्रिज्या $1\, km$ है । यदि पूरे चक्कर में $10$ मिनट लगते हों तो साइकिल सवार का $(a)$ कुल विस्थापन, $(b)$ औसत वेग, तथा $(c)$ औसत चाल क्या होगी ?

$\overrightarrow A + \overrightarrow B $ का परिणामी ${\mathop R\limits^ \to _1}$ है। सदिश $\overrightarrow {B,} $ को पलटने (विपरीत दिशा) पर परिणामी ${\mathop R\limits^ \to _2}$ हो जाता है। $R_1^2 + R_2^2$ का मान क्या होगा

दो एक समान बल (प्रत्येक $P$) किसी बिन्दु पर परस्पर $120^°$ के कोण पर लगाये जाते हैं। उनके परिणामी बल का परिमाण है