Two forces having magnitude $A$ and $\frac{ A }{2}$ are perpendicular to each other. The magnitude of their resultant is

  • [JEE MAIN 2023]
  • A

    $\frac{\sqrt{5}\,A }{4}$

  • B

    $\frac{5\,A }{2}$

  • C

    $\frac{\sqrt{5}\,A ^2}{2}$

  • D

    $\frac{\sqrt{5}\,A }{2}$

Similar Questions

The vectors $\overrightarrow A $ and $\overrightarrow B$  lie in a plane. Another vector $\overrightarrow C $ lies outside this plane. The  resultant $\overrightarrow A + \overrightarrow B + \overrightarrow C$ of these three vectors

$100$ coplanar forces each equal to $10 \,N$ act on a body. Each force makes angle $\pi /50$ with the preceding force. What is the resultant of the forces.......... $N$

A body is moving under the action of two forces ${\vec F_1} = 2\hat i - 5\hat j\,;\,{\vec F_2} = 3\hat i - 4\hat j$. Its velocity will become uniform under an additional third force ${\vec F_3}$ given by

At what angle must the two forces $(x + y)$ and $(x -y)$ act so that the resultant may be $\sqrt {({x^2} + {y^2})} $

Given below in Column $-I$ are the relations between vectors $\vec a \,$ $\vec b \,$ and $\vec c \,$ and in Column $-II$ are the orientations of $\vec a$, $\vec b$ and $\vec c$ in the $XY-$ plane. Match the relation in Column $-I$ to correct orientations in Column $-II$.

  Column $-I$   Column $-II$
$(a)$ $\vec a \, + \,\,\vec b \, = \,\,\vec c $ $(i)$ Image
$(b)$ $\vec a \, - \,\,\vec c \, = \,\,\vec b$ $(ii)$ Image
$(c)$ $\vec b \, - \,\,\vec a \, = \,\,\vec c $ $(iii)$ Image
$(d)$ $\vec a \, + \,\,\vec b \, + \,\,\vec c =0$ $(iv)$ Image