$\mathrm{A}$ व $\frac{\mathrm{A}}{2}$ परिणाम के दो बल एक-दूसरे के लम्बवत हैं। उनके परिणामी का परिमाण है:
$\frac{\sqrt{5}\,A }{4}$
$\frac{5\,A }{2}$
$\frac{\sqrt{5}\,A ^2}{2}$
$\frac{\sqrt{5}\,A }{2}$
दो सदिशों $\mathop A\limits^ \to $ तथा $\mathop B\limits^ \to $ का परिणामी सदिश $\mathop A\limits^ \to $ के लम्बवत् है तथा इसका परिमाण सदिश $\mathop B\limits^ \to $ के परिमाण का आधा है। $\mathop A\limits^ \to $ तथा $\mathop B\limits^ \to $ के बीच कोण ....... $^o$ होगा
कोई साइकिल सवार किसी वृत्तीय पार्क के केंद्र $O$ से चलना शुरू करता है तथा पार्क के किनारे $P$ पर पहुँचता है। पुनः वह पार्क की परिधि के अनुदिश साइकिल चलाता हुआ $QO$ के रास्ते ( जैसा चित्र में दिखाया गया है) केंद्र पर वापस आ जाता है । पार्क की त्रिज्या $1\, km$ है । यदि पूरे चक्कर में $10$ मिनट लगते हों तो साइकिल सवार का $(a)$ कुल विस्थापन, $(b)$ औसत वेग, तथा $(c)$ औसत चाल क्या होगी ?
दो सदिश $\overrightarrow{ A }$ एवं $\overrightarrow{ B }$ के परिमाण एक समान है। यदि $\overrightarrow{ A }+\overrightarrow{ B }$ का परिमाण $\overrightarrow{ A }-\overrightarrow{ B }$ के परिमाण का दो गुना है तो $\overrightarrow{ A }$ एवं $\overrightarrow{ B }$ के बीच कोण होगा $-$
दो एक समान बल (प्रत्येक $P$) किसी बिन्दु पर परस्पर $120^°$ के कोण पर लगाये जाते हैं। उनके परिणामी बल का परिमाण है
समान परिमाण $F$ वाले दो बल एक वस्तु पर क्रिया करते हैं और परिणामी $\frac{F}{3}$ है। इन दोनों बलों के बीच का कोण होगा