Two identical spheres are placed in contact with each other. The force of gravitation between the spheres will be proportional to ($R =$ radius of each sphere)
$R$
${R^2}$
${R^4}$
None of these
In order to make the effective acceleration due to gravity equal to zero at the equator, the angular velocity of rotation of the earth about its axis should be $(g = 10\,m{s^{ - 2}}$ and radius of earth is $6400 \,kms)$
A geostationary satellite is orbiting the earth at a height of $6\, R$ from the earth’s surface ($R$ is the earth’s radius ). What is the period of rotation of another satellite at a height of $2.5\, R$ from the earth’s surface
Figure shows the variation of the gravitatioal acceleration $a_g$ of four planets with the radial distance $r$ from the centre ofthe planet for $r \ge $ radius of the planet. Plots $1$ and $2$ coincide for $r \ge {R_2}$ and plots $3$ and $4$ coincide for $r \ge {R_4}$ . The sequence of the planets in the descending order of their densities is
A body of mass $m$ is situated at distance $4R_e$ above the Earth's surface, where $R_e$ is the radius of Earth how much minimum energy be given to the body so that it may escape
The dependence of acceleration due to gravity $g$ on the distance $r$ from the centre of the earth assumed to be a sphere of radius $R$ of uniform density is as shown figure below
The correct figure is