Two identical spheres are placed in contact with each other. The force of gravitation between the spheres will be proportional to ($R =$ radius of each sphere)

  • A

    $R$

  • B

    ${R^2}$

  • C

    ${R^4}$

  • D

    None of these

Similar Questions

Figure shows the variation of the gravitatioal acceleration $a_g$ of four planets with the radial distance $r$ from the centre ofthe planet for $r \ge $ radius of the planet. Plots $1$ and $2$ coincide for $r \ge {R_2}$ and plots $3$ and $4$ coincide for $r \ge {R_4}$ . The sequence of the planets in the descending order of their densities is

The change in the value of $‘g’$ at a height $‘h’$ above the surface of the earth is the same as at a depth $‘d’$ below the surface of earth. When both $‘d’$ and $‘h’$ are much smaller than the radius of earth, then which one of the following is correct?

Assume that a tunnel is dug through earth from North pole to south pole and that the earth is a non-rotating, uniform sphere of density $\rho $. The gravitational force on a particle of mass $m$ dropped into the tunnel when it reaches a distance $r$ from the centre of earth is

A projectile is projected with velocity $k{v_e}$ in vertically upward direction from the ground into the space. ($v_e$ is escape velocity and $k < 1$). If air resistance is considered to be negligible then the maximum height from the centre of earth to whichit can go, will be : ($R =$ radius of earth)

Asatellite is launched into a circular orbit of radius $R$ around the earth. A second satellite is launched into an orbit of radius $1.02\,R.$ The period of second satellite is larger than the first one by approximately ........ $\%$