$\lambda_1$ અને $\lambda_2$ રેખીય ઘનતા ધરાવતા બે સમાંતર અનંત લંબાઇના તાર વચ્ચેનું અંતર $R$ છે.તો એક તાર દ્વારા બીજા તારની એકમ લંબાઇ દીઠ કેટલું બળ લાગે?
$K\frac{{2{\lambda _1}{\lambda _2}}}{{{R^2}}}$
$K\frac{{2{\lambda _1}{\lambda _2}}}{R}$
$K\frac{{{\lambda _1}{\lambda _2}}}{{{R^2}}}$
$K\frac{{{\lambda _1}{\lambda _2}}}{R}$
$10\,cm$ ત્રિજયા ધરાવતા સમાન રીતે વિદ્યુતભારીત અવાહક ગોળાથી $20\,cm$ અંતરે વિદ્યુતક્ષેત્ર $100\, V/m$ છે.તો કેન્દ્રથી $3 \,cm$ અંતરે વિદ્યુતક્ષેત્ર કેટલા .....$V/m$ થાય?
પરમાણુ માટેના પ્રારંભિક મોડેલમાં, $Ze$ વિદ્યુતભાર ધરાવતું ધન વિધુતભારિત બિંદુવતુ ન્યુક્લિયસ તેની આસપાસ $R$ ત્રિજ્યા સુધી નિયમિત ઘનતાના ઋણ વિધુતભાર વડે ઘેરાયેલું છે. સમગ્રપણે પરમાણુ તટસ્થ છે. આ મૉડેલ માટે ન્યુક્લિયસથી $r$ અંતરે વિધુતક્ષેત્ર કેટલું હશે ?
$S(r)\,\, = \,\,\frac{Q}{{\pi {R^4}}}\,r$ એ $R$ ત્રિજ્યા અને કુલ વિદ્યુતભાર $Q$ વાળા એક ધન ગોળાના વિદ્યુતભાર વિતરણની ઘનતા આપે છે. ગોળાના કેન્દ્રથી $r_1$ અંતરે ગોળાની અંદરના બિંદુ $P$ માટે વિદ્યુતક્ષેત્રનું મૂલ્ય ....... છે.
ગોસના નિયમનો ઉપયોગ કર્યા સિવાય વિધુતભારની સમાન રેખીય ઘનતા $\lambda$ ધરાવતા લાંબા પાતળા તારને લીધે ઉદભવતા વિધુતક્ષેત્રનું સૂત્ર મેળવો. (સૂચન : કુલંબના નિયમનો સીધો ઉપયોગ કરો અને જરૂરી સંકલનની ગણતરી કરો.)
રેખીય વિદ્યુતભાર ઘનતા $\lambda$ ધરાવતો એક લાંબો નળાકાર એક પોલા, સમઅક્ષીય, સુવાહક નળાકાર વડે ઘેરાયેલ છે. બે નળાકારની વચ્ચેના અવકાશમાં વિદ્યુતક્ષેત્ર કેટલું હશે?