- Home
- Standard 12
- Physics
પરમાણુ માટેના પ્રારંભિક મોડેલમાં, $Ze$ વિદ્યુતભાર ધરાવતું ધન વિધુતભારિત બિંદુવતુ ન્યુક્લિયસ તેની આસપાસ $R$ ત્રિજ્યા સુધી નિયમિત ઘનતાના ઋણ વિધુતભાર વડે ઘેરાયેલું છે. સમગ્રપણે પરમાણુ તટસ્થ છે. આ મૉડેલ માટે ન્યુક્લિયસથી $r$ અંતરે વિધુતક્ષેત્ર કેટલું હશે ?
Solution

આ મૉડેલ માટે વિદ્યુતભાર વિતરણ આકૃતિ માં દર્શાવ્યા મુજબનું છે. નિયમિત ગોળાકાર વિધુતભાર વિતરણમાં કુલ વિદ્યુતભાર $-Ze$ હોવો જોઈએ, કારણ કે પરમાણુ | ( $Ze$ વિદ્યુતભારનું ન્યુક્લિયસ + ઋણ વિધુતભાર ) તટસ્થ છે. આ પરથી ઋણ વિધુતભાર ધનતા $\rho$ મળી શકે કારણ કે,
$\frac{4 \pi R^{3}}{3} \rho=0-Z e$ થવું જોઈએ.
અથવા $\rho=-\frac{3 Z e}{4 \pi R^{3}}$
ન્યુક્લિયસથી અંતરે રહેલા $P$ બિંદુએ વિધુતક્ષેત્ર $E(r)$ શોધવા માટે, આપણે ગૉસના નિયમનો ઉપયોગ કરીએ. $r$ ની દિશા ગમે તે હોય તો પણ વિદ્યુતભાર વિતરણની ગોળીય સંમિતિને લીધે વિદ્યુતક્ષેત્ર $E(r)$ નું માન માત્ર ત્રિજ્યાવર્તી અંતર $r$ પર આધારિત છે. તેની દિશા ઉદગમથી $P$ તરફના ત્રિજ્યા સદિશ જ્યની દિશામાં (અથવા તેની વિરૂદ્ધ દિશામાં) છે. સ્વાભાવિક રીતે ગોસિયન સપાટી કેન્દ્ર તરીકે ન્યુક્લિયસની આસપાસ ગોળાકાર સપાટી છે. આપણે બે પરિસ્થિતિઓનો વિચાર કરીએ, $r \,<\, R$ અને $r \,>\, R$.
$(i)$ $r \,<\,R:$ ગોળાકાર સપાટીનું વિદ્યુત ફલક્સ
$\phi=E(r) \times 4 \pi r^{2}$
જ્યાં $E(r)$ એ $r$ આગળના વિદ્યુતક્ષેત્રનું માન છે. આનું કારણ એ છે કે ગોળાકાર ગૉસિયન સપાટી પરના કોઈ પણ બિંદુએ ક્ષેત્રની દિશા સપાટીને લંબની દિશામાં છે અને સપાટી પરના બધાં બિંદુએ સમાન મૂલ્ય ધરાવે છે. ગૉસિયન સપાટી વડે ઘેરાયેલો વિદ્યુતભાર $q$, ન્યુક્લિયસનો ધન વિધુતભાર અને $r$ ત્રિજ્યાની અંદરનો ઋણ વિદ્યુતભાર છે.
એટલે કે, $q=z e+\frac{4 \pi r^{3}}{3} \rho$
અગાઉ મેળવેલ વિધુતભાર ઘનતા $\rho$ ને અવેજ કરતાં,
$q=Z e-Z e \frac{r^{3}}{R^{3}}$
આ પરથી ગૉસના નિયમ મુજબ,
$E(r)=\frac{Z e}{4 \pi \varepsilon_{0}} \frac{1}{r^{2}}-\frac{r}{R^{3}} ; r \,<\, R$
વિધુતક્ષેત્ર ત્રિજ્યાવર્તી દિશામાં બહારની તરફ છે.
$(ii)$ $r\,>\, R :$ આ કિસ્સામાં ગૉસિયન સપાટી વડે ઘેરાયેલો કુલ વિદ્યુતભાર શૂન્ય છે, કારણ કે પરમાણુ તટસ્થ છે. આમ, ગોસના નિયમ પરથી
$E(r) \times 4 \pi r^{2}=0$ અથવા $E(r)=0 ; r\,>\,R$ માટે.
$r= R$ માટે બંને કિસ્સા એકસમાન પરિણામ આપે છે : $E = 0$