Two persons $A$ and $B$ throw a (fair)die (six-faced cube with faces numbered from $1$ to $6$ ) alternately, starting with $A$. The first person to get an outcome different from the previous one by the opponent wins. The probability that $B$ wins is
$\frac{5}{6}$
$\frac{6}{7}$
$\frac{7}{8}$
$\frac{8}{9}$
One card is drawn from a pack of $52$ cards. The probability that it is a queen or heart is
If the probability of a horse $A$ winning a race is $1/4$ and the probability of a horse $B$ winning the same race is $1/5$, then the probability that either of them will win the race is
If $A$ and $B$ are two events of a random experiment, $P\,(A) = 0.25$, $P\,(B) = 0.5$ and $P\,(A \cap B) = 0.15,$ then $P\,(A \cap \bar B) = $
The probabilities that $A$ and $B$ will die within a year are $p$ and $q$ respectively, then the probability that only one of them will be alive at the end of the year is
Let $A$ and $B $ be two events such that $P\left( {\overline {A \cup B} } \right) = \frac{1}{6}\;,P\left( {A \cap B} \right) = \frac{1}{4}$ and $P\left( {\bar A} \right) = \frac{1}{4}$ where $\bar A$ stands for the complement of the event $A$. Then the events $A$ and$B$ are