एक न्याय संगत पासे $(fair\,die)$ के फलकों पर संख्याएँ $1,2,3$, $4,5,6$ लिखी हुई हैं। दो व्यक्ति $A , B$ इस पासे को बारी बारी फेंकते हैं और इस खेल में प्रथम बारी $A$ की होती है। जीतने वाला व्यक्ति वह है जिसके पासे के फेंकने पर मिली संख्या उसके. प्रतिद्वंदी द्वारा पिछली बार पासा फेंकने पर मिली संख्या से विभिन्न हो। $B$ के जीतने की प्रायिकता का मान होगा :
$\frac{5}{6}$
$\frac{6}{7}$
$\frac{7}{8}$
$\frac{8}{9}$
तीन घटनाओं $A , B$ तथा $C$ की प्रायिकताएं $P ( A )=0.6$, $P ( B )=0.4$ तथा $P ( C )=0.5$ है। यदि $P ( A \cup B )=0.8$, $P ( A \cap C )=0.3, P ( A \cap B \cap C )=0.2, P ( B \cap$ $C )=\beta$ तथा $P ( A \cup B \cup C )=\alpha$, जहाँ $0.85 \leq \alpha \leq 0.95$, तो $\beta$ निम्न में से किस अंतराल में है
माना $A$ तथा $B$ दो घटनायें इस प्रकार हैं कि दोनों में से मात्र एक के होने की प्रायिकता $\frac{2}{5}$ है तथा $A$ या $B$ के होने की प्रायिकता $\frac{1}{2}$ है, तो दोनों के एक साथ होने की प्रायिकता है :-
एक छात्रावास में $60 \%$ विद्यार्थी हींदी का, $40 \%$ अंग्रेज़ी का और $20 \%$ दोनों अखबार पढ़ते हैं। एक छात्रा को यादृच्छ्या चुना जाता है।
यदि वह हींदी का अखबार पढती है तो उसके अंग्रेजी का अखबार भी पढ़ने वाली होने की प्रायिकता ज्ञात कीजिए।
भौतिक शास्त्र में फेल होने की संभावना $20\%$ तथा गणित में फेल होने की संभावना $10\%$ है। कम से कम एक विषय में फेल होने की संभावना ............. $\%$ है
यदि $P(A \cup B) = 0.8$ तथा $P(A \cap B) = 0.3,$ तब $P(\bar A) + P(\bar B) = $