Two point charges $A$ and $B$ of magnitude $+8 \times 10^{-6}\,C$ and $-8 \times 10^{-6}\,C$ respectively are placed at a distance $d$ apart. The electric field at the middle point $O$ between the charges is $6.4 \times 10^{4}\,NC ^{-1}$. The distance ' $d$ ' between the point charges $A$ and $B$ is..............$m$
$2.0$
$3.0$
$1.0$
$4.0$
Two point charges $( + Q)$ and $( - 2Q)$ are fixed on the $X-$axis at positions $a$ and $2a$ from origin respectively. At what positions on the axis, the resultant electric field is zero
In the given figure distance of the point from $A$ where the electric field is zero is......$cm$
A body of mass $M$ and charge $q$ is connected to a spring of spring constant $k$. It is oscillating along $x-$ direction about its equilibrium position, taken to be at $x = 0$, with an amplitude $A$. An electric field $E$ is applied along the $x-$ direction. Which of the following statements is correct?
Figure shows a rod ${AB}$, which is bent in a $120^{\circ}$ circular arc of radius $R$. A charge $(-Q)$ is uniformly distributed over rod ${AB}$. What is the electric field $\overrightarrow{{E}}$ at the centre of curvature ${O}$ ?
Is electric field scalar or vector ? Why ?