दो बिन्दु आवेश $Q$ व $ - 3Q$ एक-दूसरे से कुछ दूरी पर रखे हैं। यदि $Q$ स्थिति पर विद्युत क्षेत्र $E$ हो तो स्थिति $ - 3Q$ पर यह होगा
$ - E$
$E/3$
$ - 3E$
$ - E/3$
एक आवेशित पानी की बूँद की त्रिज्या $0.1\,\mu m$ है। यह बूँद एक विद्युत क्षेत्र में साम्यावस्था में है। यदि इस पर एक इलेक्ट्रॉन के बराबर आवेश है तो विद्युत क्षेत्र की तीव्रता........$N/C$ होगी
एक पतली विधुत चालक $R$ त्रिज्या की रिंग(छल्ले) को $+ Q$ आवेश दिया गया है। रिंग के केन्द्र $O$ पर रिंग के भाग $AKB$ के आवेश के कारण विधुत फील्ड का मान $E$ है। रिंग के शेष भाग $ACDB$ के आवेश के कारण केन्द्र $O$ पर विधुत क्षेत्र का मान होगा :
एक धनावेशित पतली धातु की वलय जिसकी त्रिज्या $R$, $xy$-तल में स्थित है तथा इसका केन्द्र मूल बिन्दु $O$ पर है। एक ऋणावेशित कण $P$ विराम अवस्था से बिन्दु $(0,\,0,\,{z_0})$ से छोड़ा जाता है, यहाँ ${z_0} > 0$ तो $P$ की गति होगी
दो बिन्दु आवेशों $q _{1}(\sqrt{10} \,\mu C )$ तथा $q _{2}(-25 \,\mu C )$ को $x$-अक्ष पर क्रमश : $x =1\, m$ तथा $x =4 \,m$ पर रखा गया है। $y$-अक्ष पर बिन्दु $y =3 \,m$ पर विधुत क्षेत्र का मान
( $V / m$ में) होगा।
$\left[\right.$ दिया है : $\left.\frac{1}{4 \pi \varepsilon_{0}}=9 \times 10^{9} \,Nm ^{2} C ^{-2}\right]$
एक आवेशित कण $20000\, V/m$ के एकसमान ऊध्र्वाधर विद्युत क्षेत्र में संतुलन में लटका हुआ है। यदि कण का द्रव्यमान $9.6 \times {10^{ - 16}}\,kg$ है, तब कण पर आवेश एवं आधिक्य में इलेक्ट्रॉनों की संख्या क्रमश: होगी