दो प्रक्षेप्य $\mathrm{A}$ व $\mathrm{B}$ को क्षैतिज से $30^{\circ}$ व $60^{\circ}$ के कोण पर क्रमशः $40 \mathrm{~m} / \mathrm{s}$ व $60 \mathrm{~m} / \mathrm{s}$ प्रारम्भिक वेगों से प्रक्षेपित किया जाता है। उनके क्रमशः परासों का अनुपात है $\left(\mathrm{g}=10 \mathrm{~m} / \mathrm{s}^2\right)$
$\sqrt{3}: 2$
$2: \sqrt{3}$
$1:1$
$4:9$
किसी प्रक्षेप्य उड्डयन काल $10$ सैकण्ड तथा क्षैतिज परास $500$ मीटर है। प्रक्षेप्य की अधिकतम ऊँचाई ......... $m$ होगी
किसी स्थिर तोप से एक गोला, प्रांरभिक चाल $u$ से ऐसे कोण पर, दागा जाता है कि गोला भूतल पर अपने लक्ष्य पर की तोप से दूरी $R$ है। यदि गोले द्वारा लक्ष्य पर लगने के दो संभव मार्ग हैं, और इन में लगे समय क्रमशः $t _{1}$ तथा $t _{2}$ है। तो गुणनफल $t _{1} t _{2}$ होगा।
$t =0$ पर क्षैतिज से $60^{\circ}$ के कोण पर $10 \,ms ^{-1}$ के वेग से एक पिण्ड को प्रक्षेपित करते हैं। $t =1 \,s$ पर प्रक्षेप पथ की वक्रता त्रिज्या $R$ है। वायु प्रतिरोध को नगण्य मानकर तथा गुरूत्वीय त्वरण $g =10\, ms ^{-2}$, लेकर $R$ का मान $....\,m$ है।
नीचे दो कथन दिये गये है: एक को अभिकथन $A$ तथा दूसरे को कारण $R$ से चिन्हित किया गया है। अभिकथन $\mathrm{A}$ : जब एक पिण्ड को $45^{\circ}$ के कोण पर प्रक्षेपित किया जाता है, इसकी परास अधिकतम है।
कारण $R$ : अधिकतम परास के लिए, $\sin 2 \theta$ का मान एक के बराबर होना चाहिए। उपरोक्त कथनों के संदर्भ में नीचे दिये गये विकल्पों में से सही उत्तर चुनिए।
यदि एक प्रक्षेप्य का प्रारम्भिक वेग दोगुना कर दिया जावे तथा प्रक्षेपण कोण वही रहे, तो उसकी महत्तम ऊँचाई