10-2. Parabola, Ellipse, Hyperbola
hard

दो समुच्चय $A$ तथा $B$ निम्न प्रकार के हैं

$A=\{(a, b) \in R \times R:|a-5|< 1$ तथा $|b-5|< 1\}$

$B=\left\{(a, b) \in R \times R: 4(a-6)^{2}+9(b-5)^{2} \leq 36\right\}$ तो

A

$A \subset B$

B

$A \cap B=\phi$ (एक रिक्त समुच्चय)

C

न तो $A \subset B$ और न ही $B \subset A$

D

$B \subset A$

(JEE MAIN-2018)

Solution

$A = \left\{ {\left( {a,b} \right) \in R \times R:\left| {a – 5} \right| < 1,\left| {b – 5} \right| < 1} \right\}$

Let $a – 5 = x,b – 5 = y$

set $A$ contains all points inside $\left| x \right| < 1,\left| y \right| < 1$

$B = \left\{ {\left( {a,b} \right) \in R \times R:4{{\left( {a – 6} \right)}^2} + 9{{\left( {B – 5} \right)}^2} \le 36} \right\}$

St $B$ contains all points inside or on

$\frac{{{{\left( {x – 1} \right)}^2}}}{9} + \frac{{{y^2}}}{4} = 1$

$\left( { \pm 1, \pm 1} \right)$ lies inside the ellipse.

Hence, $A \subset B$.

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.