दो समुच्चय $A$ तथा $B$ निम्न प्रकार के हैं
$A=\{(a, b) \in R \times R:|a-5|< 1$ तथा $|b-5|< 1\}$
$B=\left\{(a, b) \in R \times R: 4(a-6)^{2}+9(b-5)^{2} \leq 36\right\}$ तो
$A \subset B$
$A \cap B=\phi$ (एक रिक्त समुच्चय)
न तो $A \subset B$ और न ही $B \subset A$
$B \subset A$
माना $a , b$ तथा $\lambda$ धनात्मक वास्तविक संख्यायें है। माना परवलय $y ^2=4 \lambda x$ के नाभिलम्ब का अंतिम बिन्दु $P$ है तथा माना दीर्घवृत्त $\frac{ x ^2}{ a ^2}+\frac{ y ^2}{ b ^2}=1$, बिन्दु $P$ से गुजरता है। यदि परवलय तथा दीर्घवृत्त के बिन्दु $P$ पर खींची गई स्पर्श रेखायें एक दूसरे के लम्बवत् हो, तो दीर्घवृत्त की उत्केन्द्रता होगी
दीर्घवृत्त में नाभियों और शीर्षों के निर्देशांक, दीर्घ और लघु अक्ष की लंबाइयाँ, उत्केंद्रता तथा नाभिलंब जीवा की लंबाई ज्ञात कीजिए
$16 x^{2}+y^{2}=16$
दीर्घवृत्त $\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1$ के नाभिलम्ब के सिरों के उत्केन्द्र कोण हैं
यदि किसी $a \in R$, के लिए दीर्घवृत्त $\frac{ x ^{2}}{ a ^{2}}+\frac{ y ^{2}}{9}=1$ की एक स्पर्श रेखा $3 x +4 y =12 \sqrt{2}$ है, तो दीर्घवृत्त की नाभियों के बीच की दूरी है
$\frac{|x|}{2}+\frac{|y|}{3}=1$ के बाहर और दीर्घवृत्त $\frac{x^{2}}{4}+\frac{y^{2}}{9}=1$ के अंदर के क्षेत्र का क्षेत्रफल (वर्ग इकाई में) है