Two similar springs $P$ and $Q$ have spring constants $K_P$ and $K_Q$, such that $K_P > K_Q .$ They are stretched first by the same amount (case $a$), then by the same force (case $b$). The work done by the springs $W_P$ and $W_Q$ are related as, in case $(a)$ and case $(b)$ respectively

  • [AIPMT 2015]
  • A

    $W_P=W_Q ,W_P >W_Q$

  • B

    $W_P=W_Q , W_P =W_Q$

  • C

    $W_P >W_Q , W_Q > W_P$

  • D

    $W_P < W_Q , W_Q < W_P$

Similar Questions

$A$ block of mass $m$ moving with a velocity $v_0$ on a smooth horizontal surface strikes and compresses a spring of stiffness $k$ till mass comes to rest as shown in the figure. This phenomenon is observed by two observers:

$A$: standing on the horizontal surface

$B$: standing on the block 

To an observer $A,$ the net work done on the block is

An elastic spring under tension of $3 \mathrm{~N}$ has a lengtha. Its length is $b$ under tension $2 \mathrm{~N}$. For its length$(3 a-2 b)$, the value of tension will be_______. $\mathrm{N}$.

  • [JEE MAIN 2024]

$A$ small block of mass $m$ is placed on $a$ wedge of mass $M$ as shown, which is initially at rest. All the surfaces are frictionless . The spring attached to the other end of wedge has force constant $k$. If $a'$ is the acceleration of $m$ relative to the wedge as it starts coming down and $A$ is the acceleration acquired by the wedge as the block starts coming down, then  Maximum velocity of $M$ is:

 spring block system is placed on a rough horizontal floor. The block is pulled towards right to give spring some elongation and released. the block will have maximum velocity when

Two springs $A$ and $B$ having spring constant $K_{A}$ and $K_{B}\left(K_{A}=2 K_{B}\right)$ are stretched by applying force of equal magnitude. If energy stored in spring $A$ is $E_{A}$ then energy stored in $B$ will be

  • [AIPMT 2001]