दो विद्यार्थियों अनिल और आशिमा एक परीक्षा में प्रविष्ट हुए। अनिल के परीक्षा में उत्तीर्ण होने की प्रायिकता $0.05$ है और आशिमा के परीक्षा में उत्तीर्ण होने की प्रायिकता $0.10$ है। दोनों के परीक्षा में उत्तीर्ण होने की प्रायिकता $0.02$ है। प्रायिकता ज्ञात कीजिए कि

अनिल और आशिमा दोनों परीक्षा में उत्तीर्ण नहीं हो पाएगें।

Vedclass pdf generator app on play store
Vedclass iOS app on app store

Let $E$ and $F$ denote the events that Anil and Ashima will qualify the examination, respectively. Given that

$P(E)=0.05$,  $P(F)=0.10$ and $P(E \cap F)=0.02$

Then

The event ' both Anil and Ashima will not qualify the examination' may be expressed as $E ^{\prime} \cap F^{\prime}$

since, $E ^{\prime}$ is 'not $E^{\prime},$ i.e., Anil will not qualify the examination and $F ^{\prime}$ is 'not $F^{\prime}$, i.e. Ashima will not qualify the examination.

Also $E ^{\prime} \cap F ^{\prime}=( E \cup F )^{\prime}$     (by Demorgan's Law)

Now $P ( E \cup F )= P ( E )+ P ( F )- P ( E \cap F )$

or   $P(E \cup F)=0.05+0.10-0.02=0.13$

Therefore $P\left(E^{\prime} \cap F^{\prime}\right)$ $=P(E \cup F)^{\prime}$ $=1-P(E \cup F)=1-0.13=0.87$

Similar Questions

एक शहर में $20\%$ लोग अंगे्रजी समाचार पत्र पढ़ते हैं, $40\%$ हिन्दी समाचार पत्र पढ़ते हैं एवं $5\%$ दोनों अखबार पढ़ते हैं, तो अखबार न पढ़ने वालों का प्रतिशत है

यदि $P\,({A_1} \cup {A_2}) = 1 - P(A_1^c)\,P(A_2^c)$ जहाँ $c$ पूरक के लिये है, तब घटनाएँ ${A_1}$ तथा ${A_2}$ हैं

किसी निश्चित जनसंख्या में $10\%$ मनुष्य धनी हैं, $5\%$ प्रसिद्ध है और $3\%$ धनी व प्रसिद्ध है। इस जनसंख्या में से एक व्यक्ति को यदृच्छया चुनने की प्रायिकता, जो या तो धनी या प्रसिद्ध हो लेकिन दोनों न हो, है

तीन घटनाओं $A$, $B$ तथा $C$ के लिए

$P(A$ अथवा $B$ में से केवल एक घटित हांती है $)$

$=P(B$ अथवा $C$ में से केवल एक घटित होती है $)$

$=P(C$ अथवा $A$ में से केबल एक घटित होती है

$=\frac{1}{4}$ तथा $P$ (सभी तीन घटनाएँ एक साथ घटित होती है)

$=\frac{1}{16}$ है,

तो प्रायिकता कि कम से कम एक घटना घटित हो, है:

  • [JEE MAIN 2017]

यदि $A, B, C$ कोई तीन घटनायें हैं। यदि $P (S), S$ के घटाने की प्रायिकता है, तो $P\,(A \cap (B \cup C)) = $