एक विशेष समस्या को $A$ और $B$ द्वारा स्वतंत्र रूप से हल करने की प्रायिकताएँ क्रमश : $\frac{1}{2}$ और $\frac{1}{3}$ हैं। यदि दोनों, स्वतंत्र रूप से, समस्या हल करने का प्रयास करते हैं, तो प्रायिकता ज्ञात कीजिए कि उनमें से तथ्यत: कोई एक समस्या हल कर लेता है।
Probability of solving the problem by $\mathrm{A},\, \mathrm{P}(\mathrm{A})=\frac{1}{2}$
Probability of solving the problem by $\mathrm{B}, \,\mathrm{P}(\mathrm{B})=\frac{1}{3}$
since the problem is solved independently by $A$ and $B$,
$\therefore $ $\mathrm{P}(\mathrm{AB})=\mathrm{P}(\mathrm{A}) \cdot \mathrm{P}(\mathrm{B})=\frac{1}{2} \times \frac{1}{3}=\frac{1}{6}$
$P(A^{\prime})=1-P(A)=1-\frac{1}{2}=\frac{1}{2}$
$P(B^{\prime})=1-P(B)=1-\frac{1}{3}=\frac{2}{3}$
Probability that exactly one of them solves the problem is given by,
$\mathrm{P}(\mathrm{A}) \cdot \mathrm{P}\left(\mathrm{B}^{\prime}\right)+\mathrm{P}(\mathrm{B}) \cdot \mathrm{P}(\mathrm{A})$
$=\frac{1}{2} \times \frac{2}{3}+\frac{1}{2} \times \frac{1}{3}$
$=\frac{1}{3}+\frac{1}{6}$
$=\frac{1}{2}$
किसी निश्चित जनसंख्या में $10\%$ मनुष्य धनी हैं, $5\%$ प्रसिद्ध है और $3\%$ धनी व प्रसिद्ध है। इस जनसंख्या में से एक व्यक्ति को यदृच्छया चुनने की प्रायिकता, जो या तो धनी या प्रसिद्ध हो लेकिन दोनों न हो, है
माना $A$ तथा $B$ दो घटनायें इस प्रकार हैं कि $P\overline {(A \cup B)} = \frac{1}{6},P(A \cap B) = \frac{1}{4}$ व $P(\bar A) = \frac{1}{4},$ जहाँ $\bar A$, घटना $A$ की पूरक है तब $A$ तथा $B$ हैं
यदि $P(A) = P(B) = x$ तथा $P(A \cap B) = P(A' \cap B') = \frac{1}{3}$ हो, तो $x = $
यदि प्रथम $100$ धनात्मक पूर्णांकों से एक पूर्णांक यदृच्छया चुना जाये तो उसके $4$ या $6$ का गुणज होने की प्रायिकता है
$A$ तथा $B$ दो ऐसी घटनाएँ हैं कि $P ( A \cup B )= P ( A \cap B )$ है, तो निम्न कथनों में से कौन सा कथन गलत है ?