Using that for any sets $\mathrm{A}$ and $\mathrm{B},$

$A \cap(A \cup B)=A$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

To show: $A \cap(A \cup B)=A$

$A \cap(A \cup B)=(A \cap A) \cup(A \cap B)$

$=A \cup(A \cap B)$

$=A\{\text { from }(1)\}$

Similar Questions

If $A, B$ and $C$ are three sets such that  $A \cap B = A \cap C$ and $A \cup B = A \cup C$ then

  • [AIEEE 2009]

Show that if $A \subset B,$ then $(C-B) \subset( C-A)$

If $A  \cap B = B$, then

Consider the sets $X$ and $Y$ of $X = \{ $ Ram , Geeta, Akbar $\} $ and $Y = \{ $ Geeta, David, Ashok $\} $ Find $X \cap Y$

Let $A =\{1,2,3,4,5,6,7\}$ and $B =\{3,6,7,9\}$. Then the number of elements in the set $\{ C \subseteq A : C \cap B \neq \phi\}$ is

  • [JEE MAIN 2022]