Using that for any sets $\mathrm{A}$ and $\mathrm{B},$

$A \cap(A \cup B)=A$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

To show: $A \cap(A \cup B)=A$

$A \cap(A \cup B)=(A \cap A) \cup(A \cap B)$

$=A \cup(A \cap B)$

$=A\{\text { from }(1)\}$

Similar Questions

Find sets $A, B$ and $C$ such that $A \cap B, B \cap C$ and $A \cap C$ are non-empty sets and $A \cap B \cap C=\varnothing$

Let $A =\{1,2,3,4,5,6,7\}$ and $B =\{3,6,7,9\}$. Then the number of elements in the set $\{ C \subseteq A : C \cap B \neq \phi\}$ is

  • [JEE MAIN 2022]

If $A, B$ and $C$ are non-empty sets, then $(A -B)  \cup (B -A)$ equals 

Find the union of each of the following pairs of sets :

$A = \{ x:x$ is a natural number and $1\, < \,x\, \le \,6\} $

$B = \{ x:x$ is a natural number and $6\, < \,x\, < \,10\} $

Let $A=\{1,2,3,4,5,6\}, B=\{2,4,6,8\} .$ Find $A-B$ and $B-A$