If $X=\{a, b, c, d\}$ and $Y=\{f, b, d, g\},$ find
$X \cap Y$
$\{ b,d\} $
$X \cap Y=\{b, d\}$
Let $A$ and $B$ be two sets. Then
Find the union of each of the following pairs of sets :
$A = \{ x:x$ is a natural number and multiple of $3\} $
$B = \{ x:x$ is a natural number less than $6\} $
Let $P=\{\theta: \sin \theta-\cos \theta=\sqrt{2} \cos \theta\}$ and $Q=\{\theta: \sin \theta+\cos \theta=\sqrt{2} \sin \theta\}$ be two sets. Then
If $A=\{x \in R:|x|<2\}$ and $B=\{x \in R:|x-2| \geq 3\}$ then
$A=\{1,2,3\}, B=\varnothing$
Confusing about what to choose? Our team will schedule a demo shortly.