3.Trigonometrical Ratios, Functions and Identities
medium

$2\,{\sin ^2}\beta + 4\,\,\cos \,(\alpha + \beta )\,\,\sin \,\alpha \,\sin \,\beta + \cos \,2\,(\alpha + \beta ) = $

A

$\sin \,\,2\alpha $

B

$\cos \,\,2\beta $

C

$\cos \,\,2\alpha $

D

$\sin \,\,2\beta $

(IIT-1977)

Solution

(c) $\cos 2(\alpha + \beta ) = 2{\cos ^2}(\alpha + \beta ) – 1,$

$2{\sin ^2}\beta = 1 – \cos 2\beta $

$L.H.S.$ $ = – \cos 2\beta + 2\cos (\alpha + \beta )\,[2\sin \alpha \sin \beta + \cos (\alpha + \beta )]$ 

$ = – \cos 2\beta + 2\cos (\alpha + \beta )\cos (\alpha – \beta )$

$ = – \cos 2\beta + (\cos 2\alpha + \cos 2\beta ) = \cos 2\alpha $.

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.