$2\,{\sin ^2}\beta + 4\,\,\cos \,(\alpha + \beta )\,\,\sin \,\alpha \,\sin \,\beta + \cos \,2\,(\alpha + \beta ) = $
$\sin \,\,2\alpha $
$\cos \,\,2\beta $
$\cos \,\,2\alpha $
$\sin \,\,2\beta $
$2 \sin \left(\frac{\pi}{22}\right) \sin \left(\frac{3 \pi}{22}\right) \sin \left(\frac{5 \pi}{22}\right) \sin \left(\frac{7 \pi}{22}\right) \sin \left(\frac{9 \pi}{22}\right)$ is
If ${\cos ^6}\alpha + {\sin ^6}\alpha + K\,{\sin ^2}2\alpha = 1,$ then $K =$
The exact value of $\cos \frac{{2\pi }}{{28}}\,\cos ec\frac{{3\pi }}{{28}}\, + \,\cos \frac{{6\pi }}{{28}}\,\cos ec\frac{{9\pi }}{{28}} + \cos \frac{{18\pi }}{{28}}\cos ec\frac{{27\pi }}{{28}}$ is equal to
Prove that $\sin ^{2} 6 x-\sin ^{2} 4 x=\sin 2 x \sin 10 x$
$\frac{{\sin {{81}^o} + \cos {{81}^o}}}{{\sin {{81}^o} - \cos {{81}^o}}}$ is equal to