If $\frac{\sqrt{2} \sin \alpha}{\sqrt{1+\cos 2 \alpha}}=\frac{1}{7}$ and $\sqrt{\frac{1-\cos 2 \beta}{2}}=\frac{1}{\sqrt{10}}$ $\alpha, \beta \in\left(0, \frac{\pi}{2}\right),$ then $\tan (\alpha+2 \beta)$ is equal to

  • [JEE MAIN 2020]
  • A

    $1$

  • B

    $2$

  • C

    $2.5$

  • D

    $3.5$

Similar Questions

If $\theta $ is an acute angle and $\sin \frac{\theta }{2} = \sqrt {\frac{{x - 1}}{{2x}}} $, then $\tan \theta $ is equal to

Number of values of $ x \in \left[ {0,2\pi } \right]$ satisfying the equation $cotx - cosx = 1 - cotx. cosx$

In a triangle $ABC,$ the value of $\sin A + \sin B + \sin C$ is

Which of the following functions have the maximum value unity ?

The value of $\frac{1}{4} \,\,tan \frac{\pi}{8} +\frac{1}{8} \,\,tan \frac{\pi}{16}+\frac{1}{16} \,\,tan \frac{\pi}{32}+.\,.\,.\,\infty  $ terms is equal to-