फलन $f(x)=x^{2}+2 x-8, x \in[-4,2]$ के लिए रोले के प्रमेय को सत्यापित कीजिए।

Vedclass pdf generator app on play store
Vedclass iOS app on app store

The given function, $f(x)=x^{2}+2 x-8,$ being polynomial function, is continuous in $[-4,2]$ and is differentiable in $(-4,2).$

$f(-4)=(-4)^{2}+2 x(-4)-8=16-8-8=0$

$f(2)=(2)^{2}+2 \times 2-8=4+4-8=0$

$\therefore f(-4)=f(2)=0$

$\Rightarrow$ The value of $f(x)$ at $-4$ and $2$ coincides.

Rolle's Theorem states that there is a point $c \in(-4,2)$ such that $f^{\prime}(c)=0$

$f(x)=x^{2}+2 x-8$

$\Rightarrow f^{\prime}(x)=2 x+2$

$\therefore f^{\prime}(c)=0$

$\Rightarrow 2 c+2=-1$

$\Rightarrow c=-1$

$c=-1 \in(-4,2)$

Hence, Rolle's Theorem is verified for the given function.

Similar Questions

माना $f$ कोई फलन है जोकि $[ a , b ]$ में संतत तथा $( a , b )$ में दो बार अवकलनीय है। यदि सभी $x \in( a , b )$ के लिए $f^{\prime}( x ) > 0$ तथा $f^{\prime \prime}( x )<0$ हैं, तो किसी भी $c \in( a , b )$, के लिए $\frac{f( c )-f( a )}{f( b )-f( c )}$ निम्न में से किससे बड़ा है?

  • [JEE MAIN 2020]

माना $R$ पर परिभाषित कोई फलन $f$ है तथा माना यह $|f( x )-f( y )| \leq\left|( x - y )^{2}\right|, \forall( x , y ) \in R$ को संतुष्ट करता है। यदि $f(0)=1$ है, तो

  • [JEE MAIN 2021]

फलन $f ( x )= x ^{3}-4 x ^{2}+8 x +11, x \in[0,1]$ के लिए लग्रांज मध्यमान प्रमेय में $c$ का मान है

  • [JEE MAIN 2020]

यदि फलन $f(x) = a{x^3} + b{x^2} + 11x - 6$ रोले प्रमेय की शतोर्ं को अन्तराल $[1, 3]$ के लिए सन्तुष्ट करता है तथा $f'\left( {2 + \frac{1}{{\sqrt 3 }}} \right) = 0$, तब $a$ और $b$ के मान क्रमश: हैं

फलन$f(x) = x(x + 3){e^{ - (1/2)x}}$ रोले प्रमेय की सभी शर्तों को  $[-3, 0] $ में सन्तुष्ट करता है। $c$  का मान है