$x \in[-4,2]$ માં વિધેય $f(x)=x^{2}+2 x-8$ માટે રોલનું પ્રમેય ચકાસો.
The given function, $f(x)=x^{2}+2 x-8,$ being polynomial function, is continuous in $[-4,2]$ and is differentiable in $(-4,2).$
$f(-4)=(-4)^{2}+2 x(-4)-8=16-8-8=0$
$f(2)=(2)^{2}+2 \times 2-8=4+4-8=0$
$\therefore f(-4)=f(2)=0$
$\Rightarrow$ The value of $f(x)$ at $-4$ and $2$ coincides.
Rolle's Theorem states that there is a point $c \in(-4,2)$ such that $f^{\prime}(c)=0$
$f(x)=x^{2}+2 x-8$
$\Rightarrow f^{\prime}(x)=2 x+2$
$\therefore f^{\prime}(c)=0$
$\Rightarrow 2 c+2=-1$
$\Rightarrow c=-1$
$c=-1 \in(-4,2)$
Hence, Rolle's Theorem is verified for the given function.
જો સમીકરણ $a_nx^n + a_{n-1}x^{n-1}+ …. + a_1x = 0 $ નું ધન બીજ $x = \alpha $ હોય, તો સમીકરણ $na_nx^{n-1 } + (n - 1) a_{n-1}x^{n-2} + …. + a_1 = 0$ નું ધન બીજ કેવું હોય ?
ધારો કે બધા $x $ માટે $ f $ વિકલનીય છે. જો $x \in [1, 6]$ માટે $f (1) = -2$ અને $ f'(x) \geq 2$ હોય, તો......
ધારો કે $f: \mathbb{R} \rightarrow \mathbb{R}$ એ એવું ત્રીવિક્લનીય વિધેય છે કે જેથી $f(0)=0, f(1)=1, f(2)=-$ $1, f(3)=2$ અને $f(4)=-2$. તો $\left(3 f^{\prime} f^{\prime \prime}+f f^{\prime \prime}\right)(x)$ નાં શૂન્યની ન્યૂનતમ સંખ્યા ......... છે.
મધ્યકમાન પ્રમેયમાં $f(b) - f(a) = (b - a)f'(c)$ આપેલ છે. જો $a = 4 , b = 9$ અને $f(x) = \sqrt x $ તો $ c$ ની કિમંત મેળવો.
જો $y = f (x)$ અને $y = g (x)$ એ $[0,2]$ પર બે વિકલનીય વિધેય છે કે જેથી $f(0) = 3,$ $f(2) = 5$ , $g (0) = 1$ અને $g(2) = 2$ થાય. જો ઓછામાં ઓછો એક $c \in \left( {0,2} \right)$ મળે કે જેથી $f'(c)=kg'(c)$ થાય તો $k$ મેળવો.