फलन $f(x) = {(x - 3)^2}$ मध्यमान प्रमेय की सभी शर्तो को $ [3, 4] $ में सन्तुष्ट करता है। यदि $y = {(x - 3)^2}$ पर एक बिन्दु से खींची गई स्पर्श रेखा $ (3, 0) $ और $(4, 1)$ को मिलाने वाली जीवा के समान्तर हो, तो वह बिन्दु है
$\left( {\frac{7}{2},\frac{1}{2}} \right)$
$\left( {\frac{7}{2},\frac{1}{4}} \right)$
$(1, 4)$
$(4, 1)$
यदि $f$ तथा $g,\,[0,1]$ में अवकलनीय फलन हैं जो $f(0)=2=g(1)$, $g(0)=0$ और $f(1)=6$ को संतुष्ट करते हैं, तो किसी $c \in] 0,[1$ के लिए:
फलन $f(x) = {x^2} - 4$ के लिये रोले प्रमेय किस अन्तराल में सत्य है
जाँच कीजिए कि क्या रोले का प्रमेय निम्नलिखित फलनों में से किन-किन पर लागू होता है। इन उदाहरणों से क्या आप रोले के प्रमेय के विलोम के बारे में कुछ कह सकते हैं?
$f(x)=[x]$ के लिए $x \in[5,9]$
माना $\mathrm{f}:[2,4] \rightarrow \mathbb{R}$ एक अवकलनीय फलन है, जिसके लिए $\left(x \log _e x\right) f^{\prime}(x)+\left(\log _e x\right) f(x)+f(x) \geq 1$, $x \in[2,4], f(2)=\frac{1}{2}$ तथा $f(4)=\frac{1}{4}$ हैं।
निम्न दो कथनों का विचार कीजिए :
($A$) सभी $\mathrm{x} \in[2,4]$ के लिए $\mathrm{f}(\mathrm{x}) \leq 1$, है।
($B$) सभी $x \in[2,4]$ के लिए $f(x) \geq \frac{1}{8}$ है। तो
मान लीजिए कि $f: R \rightarrow R$ अभिकलनीय फलन $(differentiable\,functon)$ इस प्रकार है कि किन्हीं $a < b$ के लिए $f(a)=0=f(b)$ और $f^{\prime}(a) f^{\prime}(b) > 0$ है। अंतराल $(interval$;' $( a , b )$ में $f( x )$ के मूलों $(roots)$ की न्यूनतम संख्या क्या है ?