What is the sum of all natural numbers $n$ such that the product of the digits of $n$ (in base $10$ ) is equal to $n^2-10 n-36 ?$
$12$
$13$
$124$
$2612$
If $|{x^2} - x - 6| = x + 2$, then the values of $x$ are
The number of roots of the equation $\log ( - 2x)$ $ = 2\log (x + 1)$ are
If $x$ is real, then the maximum and minimum values of the expression $\frac{{{x^2} - 3x + 4}}{{{x^2} + 3x + 4}}$ will be
If $\alpha $ and $\beta $ are the roots of the quadratic equation, $x^2 + x\, sin\,\theta -2sin\,\theta = 0$, $\theta \in \left( {0,\frac{\pi }{2}} \right)$ then $\frac{{{\alpha ^{12}} + {\beta ^{12}}}}{{\left( {{\alpha ^{ - 12}} + {\beta ^{ - 12}}} \right){{\left( {\alpha - \beta } \right)}^{24}}}}$ is equal to
Number of integers satisfying inequality, $\sqrt {{{\log }_3}(x) - 1} + \frac{{\frac{1}{2}{{\log }_3}\,{x^3}}}{{{{\log }_3}\,\frac{1}{3}}} + 2 > 0$ is