What is the sum of all natural numbers $n$ such that the product of the digits of $n$ (in base $10$ ) is equal to $n^2-10 n-36 ?$
$12$
$13$
$124$
$2612$
If $\alpha ,\beta ,\gamma$ are the roots of $x^3 - x - 2 = 0$, then the value of $\alpha^5 + \beta^5 + \gamma^5$ is-
Let $a, b, c, d$ be real numbers such that $|a-b|=2$, $|b-c|=3,|c-d|=4$. Then, the sum of all possible values of $|a-d|$ is
Let, $\alpha, \beta$ be the distinct roots of the equation $\mathrm{x}^2-\left(\mathrm{t}^2-5 \mathrm{t}+6\right) \mathrm{x}+1=0, \mathrm{t} \in \mathrm{R}$ and $\mathrm{a}_{\mathrm{n}}=\alpha^{\mathrm{n}}+\beta^{\mathrm{n}}$. Then the minimum value of $\frac{\mathrm{a}_{2023}+\mathrm{a}_{2025}}{\mathrm{a}_{2024}}$ is
The maximum value $M$ of $3^x+5^x-9^x+15^x-25^x$, as $x$ varies over reals, satisfies
If $x$ is real, then the value of ${x^2} - 6x + 13$ will not be less than