अतिपरवलय $25{x^2} - 16{y^2} = 400$ की उस जीवा का समीकरण क्या होगा, जिसका मध्य बिन्दु $(5, 3)$ है
$115x - 117y = 17$
$125x - 48y = 481$
$127x + 33y = 341$
$15x + 121y = 105$
अतिपरवलय $\frac{x^2}{9}-\frac{y^2}{4}=1$, पर सरल रेखा $2 x-y=1$ के समान्तर स्पर्श रेखाये खींची गयी है। इन स्पर्श रेखाओं के अतिपरवलय पर स्पर्श बिन्दु (points of contacts) निम्न है
$(A)$ $\left(\frac{9}{2 \sqrt{2}}, \frac{1}{\sqrt{2}}\right)$
$(B)$ $\left(-\frac{9}{2 \sqrt{2}},-\frac{1}{\sqrt{2}}\right)$
$(C)$ $(3 \sqrt{3},-2 \sqrt{2})$
$(D)$ $(-3 \sqrt{3}, 2 \sqrt{2})$
रेखा $3x - 4y = 5$ अतिपरवलय ${x^2} - 4{y^2} = 5$ की एक स्पर्श रेखा है तो स्पर्श बिन्दु है
प्रतिबंधों को संतुष्ट करते हुए अतिपरवलय का समीकरण ज्ञात कीजिए
नाभियाँ $(\pm 5,0),$ अनुप्रस्थ अक्ष की लंबाई $8$ है
अतिपरवलय $\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}} = 1$ के सहायक वृत्त का समीकरण है
माना $\mathrm{H}_{\mathrm{n}}=\frac{\mathrm{x}^2}{1+\mathrm{n}}-\frac{\mathrm{y}^2}{3+\mathrm{n}}=1, \mathrm{n} \in \mathrm{N}$ हैं। माना $\mathrm{k}$, $\mathrm{n}$ का वह न्यूनतम सम मान है जिसके लिए $\mathrm{H}_{\mathrm{k}}$ की उत्केन्द्रता एक परिमेय संख्या है। यदि $\mathrm{H}_k$ की नाभिलंब जीवा की लंबाई $l$ है, तो $21 l$ बराबर __________है।