When $n$ vectors of different magnitudes are added, we get a null vector. Then the value of $n$ cannot be
$11$
$4$
$3$
$2$
Statement $I:$ If three forces $\vec{F}_{1}, \vec{F}_{2}$ and $\vec{F}_{3}$ are represented by three sides of a triangle and $\overrightarrow{{F}}_{1}+\overrightarrow{{F}}_{2}=-\overrightarrow{{F}}_{3}$, then these three forces are concurrent forces and satisfy the condition for equilibrium.
Statement $II:$ A triangle made up of three forces $\overrightarrow{{F}}_{1}, \overrightarrow{{F}}_{2}$ and $\overrightarrow{{F}}_{3}$ as its sides taken in the same order, satisfy the condition for translatory equilibrium.
In the light of the above statements, choose the most appropriate answer from the options given below:
Give the names of two methods for vector addition. Write the law of parallogram for vector addition.
A person goes $10\, km$ north and $20\, km$ east. What will be displacement from initial point........$km$
Write two properties of vector addition.
Two forces $F_1 = 3N$ at $0^o$ and $F_2 = 5N$ at $60^o$ act on a body. Then a single force that would balance the two forces must have a magnitude of .......... $N$