6.System of Particles and Rotational Motion
medium

Which of the following (if mass and radius are assumed to be same) have maximum percentage of total $K.E.$ in rotational form while pure rolling?

A

Disc

B

Sphere

C

Ring

D

Hollow sphere

Solution

(c)

$K _{\text {Rother }}= K _{\text {Trenstation }}+ K _{\text {rotaton }}$

$=\frac{1}{2} m v^2+\frac{1}{2} l \omega^2$

$=\frac{1}{2} m R^2 \omega^2+\frac{1}{2}\left|\omega^2=\frac{1}{2}\right| \omega^2\left(1+\frac{m R^2}{1}\right)$

$\Rightarrow$ ratio $=\frac{K_{\text {waton }}}{K_{\text {total }}}=\frac{\frac{1}{2} I ^2}{\frac{1}{2} I_{\omega^2}\left(1+\frac{m R^2}{1}\right)}$

$=\frac{1}{1+\frac{m R^2}{1}}$

For disc,

$\text { Ratio }=\frac{1}{1+\frac{m R^2}{\left(\frac{m R^2}{2}\right)}}=\frac{1}{3}$

Solid sphere

$\text { Ratio }=\frac{1}{1+\frac{m R^2}{\frac{2}{5} m R^2}}=\frac{2}{7}$

Ring

$\text { Ratio }=\frac{1}{1+\frac{m R^2}{m R^2}}=\frac{1}{2}$

Hollow sphere ratio $=\frac{1}{1+\frac{m R^2}{\frac{2}{3} m R^2}}=\frac{2}{5}$

Hence $ring$ correct option.

Standard 11
Physics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.