Which of the following (if mass and radius are assumed to be same) have maximum percentage of total $K.E.$ in rotational form while pure rolling?
Disc
Sphere
Ring
Hollow sphere
A solid sphere is in rolling motion. In rolling motion a body possesses translational kinetic energy $(K_t)$ as well as rotational kinetic energy $(K_r)$ simultaneously. The ratio $K_t : (K_t + K_r)$ for the sphere is
Two coaxial discs, having moments of inertia $I_1$ and $\frac{I_1}{2}$ are a rotating with respectively angular velocities $\omega_1$ and $\frac{\omega_1}{2}$, about their common axes. They are brought in contact with each other and thereafter they rotate with a common angular velocity. If $E_f$ and $E_i$ are the final and initial total energies, then $(E_f -E_i)$ is
A solid cylinder $P$ rolls without slipping from rest down an inclined plane attaining a speed $v_p$ at the bottom. Another smooth solid cylinder $Q$ of same mass and dimensions slides without friction from rest down the inclined plane attaining a speed $v_q$ at the bottom. The ratio of the speeds $\frac{v_q}{v_p}$ is
Write the formula of work done by torque in rotational rigid body about a the fixed axis.
A rolling wheel of $12 \,kg$ is on an inclined plane at position $P$ and connected to a mass of $3 \,kg$ through a string of fixed length and pulley as shown in figure. Consider $PR$ as friction free surface. The velocity of centre of mass of the wheel when it reaches at the bottom $Q$ of the inclined plane $P Q$ will be $\frac{1}{2} \sqrt{ xgh } \,m / s$. The value of $x$ is.............