નીચે પૈકી કયું સમીકરણ પારિમાણિક રીતે ખોટું થાય?
જ્યાં $t=$સમય, $h=$ઊંચાઈ, $s=$પૃષ્ઠતાણ, $\theta=$ખૂણો, $\rho=$ઘનતા, $a, r=$ત્રિજ્યા, $g=$ગુરુત્વ પ્રવેગ, ${v}=$કદ, ${p}=$દબાણ, ${W}=$કાર્ય, $\Gamma=$ટોર્ક, $\varepsilon=$પરમિટિવિટી, ${E}=$વિદ્યુતક્ષેત્ર, ${J}=$પ્રવાહઘનતા, ${L}=$લંબાઈ
${v}=\frac{\pi {pa}^{4}}{8 \eta {L}}$
${h}=\frac{2 {s} \cos \theta}{\rho {rg}}$
${J}=\varepsilon \frac{\partial {E}}{\partial {t}}$
${W}=\Gamma \theta$
સૂત્ર $X = 5YZ^2$, $X$ અને $Z$ ના પરિમાણ કેપેસિટન્સ અને ચુંબકીયક્ષેત્ર જેવા છે. તો $SI$ એકમ પધ્ધતિમાં $Y$ નું પરિમાણ શું થશે?
અમુક વિસ્તારમાં વિદ્યુત ક્ષેત્ર $\overrightarrow{ E }=\left(\frac{ A }{x^2} \hat{i}+\frac{ B }{y^3} \hat{j}\right)$ મુજબ આપી શકાય છે. $A$ અને $B$ ના $SI$ એકમ $..........$ થશે.
$(\rho )$ ઘનતા $(r)$ ત્રિજ્યા $(S)$ પૃષ્ઠતાણ ધરાવતા પ્રવાહીના ટીપાંના દોલનોનો આવર્તકાળ $(T)$ નો કયો સંબંધ સાચો પડે?
માર્શિયન પધ્ધતિમાં બળ $(F)$, પ્રવેગ $(A)$ અને સમય $(T)$ ને મૂળભૂત રાશિ લેવામાં આવે તો માર્શિયન પધ્ધતિમાં લંબાઇનું પારિમાણિક સૂત્ર શું થાય?