આપેલ પૈકી . . . . યુગ્મ વિધેય છે.

  • A

    $f(x) = \frac{{{a^x} + 1}}{{{a^x} - 1}}$

  • B

    $f(x) = x\left( {\frac{{{a^x} - 1}}{{{a^x} + 1}}} \right)$

  • C

    $f(x) = \frac{{{a^x} - {a^{ - x}}}}{{{a^x} + {a^{ - x}}}}$

  • D

    $f(x) = \sin x$

Similar Questions

જો $x \in [0, 1]$ હોય તો સમીકરણ $2[cos^{-1}x] + 6[sgn(sinx)] = 3$ ના ઉકેલોની સંખ્યા .......... મળે. (જ્યા $[.]$ મહત્તમ પુર્ણાક વિધેય અને sgn $(x)$ એ ચિહ્ન વિધેય છે)

વિધેય $f$ એ ગણ $A=\left\{x \in N: x^{2}-10 x+9 \leq 0\right\}$ થી ગણ $B=\left\{n^{2}: n \in N\right\}$ કે જેથી દરેક $x \in A$ માટે $f(x) \leq(x-3)^{2}+1$ તેવા વિધેય $f$ ની સંખ્યા મેળવો.

  • [JEE MAIN 2022]

ધારોક $f, g: N -\{1\} \rightarrow N$ એ નીચે મુજબ વ્યાખ્યાયિત વિધેયો છે: $f(a)=a$, જ્યાં $\alpha$ એ એવા અવિભાજ્યો $p$ ની ધાતોમાંની મહ્ત્તમ ધાત છે કે જેથી $p^{\alpha}$ વડે $a$ વિભાજ્ય હોય, અને $g(a)=a+1$, પ્રત્યેક $a \in N -\{1\}$, તો વિધેય $f+g$ એ

  • [JEE MAIN 2022]

ધારોકે $f(x)=2 x^{2}-x-1$ અને $S =\{n \in Z :|f(n)| \leq 800\}$ છે, તો $\sum_{n \in S} f(n)$ નું મૂલ્ય ............ છે.

  • [JEE MAIN 2022]

વિધેય $f(x) = \frac{{{{\sin }^{ - 1}}(x - 3)}}{{\sqrt {9 - {x^2}} }}$ નો પ્રદેશ મેળવો.

  • [AIEEE 2004]