निम्न में से कौनसा फलन सम फलन है
$f(x) = \frac{{{a^x} + 1}}{{{a^x} - 1}}$
$f(x) = x\left( {\frac{{{a^x} - 1}}{{{a^x} + 1}}} \right)$
$f(x) = \frac{{{a^x} - {a^{ - x}}}}{{{a^x} + {a^{ - x}}}}$
$f(x) = \sin x$
माना $\mathrm{S}=\{1,2,3,4,5,6\}$ है तो ऐसे ऐकेकी फलनों $\mathrm{f}: \mathrm{S} \rightarrow \mathrm{P}(\mathrm{S})$, जहाँ $\mathrm{P}(\mathrm{S})$ समुच्चय $\mathrm{S}$ का घात समुच्चय $\mathrm{f}(\mathrm{n}) \subset \mathrm{f}(\mathrm{m})$ है जब भी $\mathrm{n}<\mathrm{m}$ है, की संख्या है_______.
मान लें कि $A$ सभी वास्तविक संख्याओं $x$ के समुच्चय को इस प्रकार निरूपित करता है कि $x^3-[x]^3=(x-[x])^3$ जहॉ $[x], x$ से छोटा या उसके बराबर महत्तम पूर्णांक हैं,तब
फलन
$\mathrm{f}(\mathrm{x})=\frac{1}{\sqrt{[\mathrm{x}]^2-3[\mathrm{x}]-10}}$, (जहाँ $[\mathrm{x}]$ महत्तम पूर्णांक $\leq \mathrm{x}$ है, का प्रांत है)
माना द्विघात बहुपद $f ( x )$ इस प्रकार है कि $f (-2)+ f (3)=0$ है। यदि $f ( x )=0$ का एक मूल $-1$ है, तो $f ( x )=0$ के मूलों का योगफल है :
माना $\sum\limits_{k = 1}^{10} {f\,(a\, + \,k)} \, = \,16\,({2^{10}}\, - \,1)$ है, जहाँ सभी प्राकृत संख्याओं $x , y$
के लिए, फलन $f , f ( x + y )= f ( x ) f ( y )$ को संतुष्ट करता है तथा $f ( a )=2$ है। तो प्राकृत संख्या $^{\prime} a ^{\prime}$ बराबर है :