If $\cos \theta = \frac{3}{5}$ and $\cos \phi = \frac{4}{5},$ where $\theta $ and $\phi $ are positive acute angles, then $\cos \frac{{\theta - \phi }}{2} = $

  • A

    $\frac{7}{{\sqrt 2 }}$

  • B

    $\frac{7}{{5\sqrt 2 }}$

  • C

    $\frac{7}{{\sqrt 5 }}$

  • D

    $\frac{7}{{2\sqrt 5 }}$

Similar Questions

$\cos \frac{{2\pi }}{{15}}\cos \frac{{4\pi }}{{15}}\cos \frac{{8\pi }}{{15}}\cos \frac{{16\pi }}{{15}}  =$

  • [IIT 1985]

If $\frac{{5\pi }}{2} < x < 3\pi $, then the value of the expression $\frac{{\sqrt {1 - \sin x}  + \sqrt {1 + \sin x} }}{{\sqrt {1 - \sin x}  - \sqrt {1 + \sin x} }}$ is

Show that

$\tan 3 x \tan 2 x \tan x=\tan 3 x-\tan 2 x-\tan x$

The expression $[1 - sin (3\pi - \alpha ) + cos (3\pi + \alpha )]$ $\left[ {1\,\, - \,\,\sin \,\left( {\frac{{3\,\pi }}{2}\,\, - \,\,\alpha } \right)\,\, + \,\,\cos \,\left( {\frac{{5\,\pi }}{2}\,\, - \,\,\alpha } \right)} \right]$ when simplified reduces to :

If a $cos^3 \alpha + 3a \,cos\, \alpha \, sin^2\, \alpha = m$ and  $asin^3\, \alpha + 3a \, cos^2\, \alpha \,sin\, \alpha = n$ . Then $(m + n)^{2/3} + (m - n)^{2/3}$ is equal to :