Which of the following is function
$y = \sqrt x - \left| x \right|;\,\,x \in R$
$y = \sqrt x - \left| x \right|;\,\,x \ge 1$
$x = {y^2}$
none
Domain of the definition of function
$f(x) = \sqrt {\frac{{4 - {x^2}}}{{\left[ x \right] + 2}}} $ is $($ where $[.] \rightarrow G.I.F.)$
The domain of the function $f(x) = {\sin ^{ - 1}}[{\log _2}(x/2)]$ is
The range of the function $f(x) = \frac{{\sqrt {1 - {x^2}} }}{{1 + \left| x \right|}}$ is
The number of points, where the curve $f(x)=e^{8 x}-e^{6 x}-3 e^{4 x}-e^{2 x}+1, x \in R$ cuts $x$-axis, is equal to
If domain of function $f(x) = \sqrt {\ln \left( {m\sin x + 4} \right)} $ is $R$ , then number of possible integral values of $m$ is