Which of the following is function

  • A

    $y = \sqrt x  - \left| x \right|;\,\,x \in R$

  • B

    $y = \sqrt x  - \left| x \right|;\,\,x \ge 1$

  • C

    $x = {y^2}$

  • D

    none

Similar Questions

Which pair $(s)$ of function $(s)$ is/are equal ?

where $\{x\}$ and $[x]$ denotes the fractional part $\&$ integral part functions.

The domain of the definition of the function $f\left( x \right) = \frac{1}{{4 - {x^2}}} + \log \,\left( {{x^3} - x} \right)$ is

  • [JEE MAIN 2019]

Numerical value of the expression $\left| {\;\frac{{3{x^3} + 1}}{{2{x^2} + 2}}\;} \right|$ for $x = - 3$ is

Let $f$ be a function satisfying $f(xy) = \frac{f(x)}{y}$ for all positive real numbers $x$ and $y.$ If $ f(30) = 20,$ then the value of $f(40)$ is-

The graph of function $f$ contains the point $P (1, 2)$ and $Q(s, r)$. The equation of the secant line through $P$ and $Q$ is $y = \left( {\frac{{{s^2} + 2s - 3}}{{s - 1}}} \right)$ $x - 1 - s$. The value of $f ‘ (1)$, is