Which of the following sequence is an arithmetic sequence

  • A

    $f(n) = an + b;\,n \in N$

  • B

    $f(n) = k{r^n};\,n \in N$

  • C

    $f(n) = (an + b)\,k{r^n};\,n \in N$

  • D

    $f(n) = \frac{1}{{a\left( {n + \frac{b}{n}} \right)}};\,n \in N$

Similar Questions

Let $a_1, a_2, \ldots \ldots, a_n$ be in A.P. If $a_5=2 a_3$ and $a_{11}=18$, then $12\left(\frac{1}{\sqrt{a_{10}}+\sqrt{a_{11}}}+\frac{1}{\sqrt{a_{11}}+\sqrt{a_{12}}}+\ldots . \cdot \frac{1}{\sqrt{a_{17}}+\sqrt{a_{18}}}\right)$ is equal to $..........$.

  • [JEE MAIN 2023]

If $n$ be odd or even, then the sum of $n$ terms of the series $1 - 2 + $ $3 - $$4 + 5 - 6 + ......$ will be

Let $a_n, n \geq 1$, be an arithmetic progression with first term $2$ and common difference $4$ . Let $M_n$ be the average of the first $n$ terms. Then the sum $\sum \limits_{n=1}^{10} M_n$ is

  • [KVPY 2019]

Let $T_r$ be the $r^{\text {th }}$ term of an $A.P.$ If for some $m$, $T _{ m }=\frac{1}{25}, T_{25}=\frac{1}{20}$ and $20 \sum_{ r =1}^{25} T_{ r }=13$, then $5 m \sum_{ r = m }^{2 m} T _{ r }$ is equal to:

  • [JEE MAIN 2025]

Write the first five terms of the sequences whose $n^{t h}$ term is $a_{n}=\frac{2 n-3}{6}$