Which of the following sequence is an arithmetic sequence
$f(n) = an + b;\,n \in N$
$f(n) = k{r^n};\,n \in N$
$f(n) = (an + b)\,k{r^n};\,n \in N$
$f(n) = \frac{1}{{a\left( {n + \frac{b}{n}} \right)}};\,n \in N$
The number of terms in an $A .P.$ is even ; the sum of the odd terms in it is $24$ and that the even terms is $30$. If the last term exceeds the first term by $10\frac{1}{2}$ , then the number of terms in the $A.P.$ is
If ${a^{1/x}} = {b^{1/y}} = {c^{1/z}}$ and $a,\;b,\;c$ are in $G.P.$, then $x,\;y,\;z$ will be in
Let ${\left( {1 - 2x + 3{x^2}} \right)^{10x}} = {a_0} + {a_1}x + {a_2}{x^2} + .....+{a_n}{x^n},{a_n} \ne 0$, then the arithmetic mean of $a_0,a_1,a_2,...a_n$ is
If the sum of the first $2n$ terms of $2,\,5,\,8...$ is equal to the sum of the first $n$ terms of $57,\,59,\,61...$, then $n$ is equal to
In an $\mathrm{A.P.}$ if $m^{\text {th }}$ term is $n$ and the $n^{\text {th }}$ term is $m,$ where $m \neq n$, find the ${p^{th}}$ term.