निम्न में से कौन सी श्रेणी समान्तर श्रेणी है
$f(n) = an + b;\,n \in N$
$f(n) = k{r^n};\,n \in N$
$f(n) = (an + b)\,k{r^n};\,n \in N$
$f(n) = \frac{1}{{a\left( {n + \frac{b}{n}} \right)}};\,n \in N$
तीन घनात्मक पूर्णाकों $\mathrm{p}, \mathrm{q}, \mathrm{r}$, के लिए $\mathrm{x}^{\mathrm{pq}}=\mathrm{y}^{\mathrm{qr}}=\mathrm{z}^{\mathrm{p}^2 \mathrm{r}}, \mathrm{r}=\mathrm{pq}+1$ हैं तथा $3,3 \log _{\mathrm{y}} \mathrm{x}$, $3 \log _z y, 7 \log _x z$ एक $A.P.$ में है, जिसका सार्व अंतर $\frac{1}{2}$ है। तो $\mathrm{r}-\mathrm{p}-\mathrm{q}$ बराबर है
प्रथम $n$ प्राकृत संख्याओं का योग होता है
यदि किसी समांतर श्रेणी के $n$ वें पद का योगफल $3 n^{2}+5 n$ हैं तथा इसका $m$ वाँ पद $164$ है, तो $m$ का मान ज्ञात कीजिए।
माना भिन्न पदों वाली समांतर श्रेढ़ी (non-constant $A.P.$) $a _{1}, a _{2}$, $a _{3}, \ldots \ldots \ldots \ldots . . .$ के प्रथम $n$ पदों का योगफल $50 n +\frac{ n ( n -7)}{2} A$ है, जहाँ $A$ एक अचर है। यदि इस समांतर श्रेढ़ी का सार्वअंतर $d$ है, तो क्रमित युग्म $\left( d , a _{50}\right)$ बराबर है $:$
$p,\;q,\;r$ समान्तर श्रेणी में एवं धनात्मक हैं तो वर्ग समीकरण $p{x^2} + qx + r = 0$ के मूल वास्तविक होंगे, यदि