- Home
- Standard 12
- Mathematics
Which of the given values of $x$ and $y$ make the following pair of matrices equal
$\left[\begin{array}{cc}3 x+7 & 5 \\ y+1 & 2-3 x\end{array}\right]=\left[\begin{array}{cc}0 & y-2 \\ 8 & 4\end{array}\right]$
$x=\frac{-1}{3}$, $y=7$
$x=\frac{-1}{3}$, $y=\frac{-2}{3}$
$y=7$, $x=\frac{-2}{3}$
Not possible to find
Solution
It is given that $\left[\begin{array}{cc}3 x+7 & 5 \\ y+1 & 2-3 x\end{array}\right]=\left[\begin{array}{cc}0 & y-2 \\ 8 & 4\end{array}\right]$
Equating the corresponding elements, we get:
$3 x+7=0 \Rightarrow x=-\frac{7}{3}$
$5=y-2 \Rightarrow y=7$
$y+1=8 \Rightarrow y=7$
$2-3 x=4 \Rightarrow x=-\frac{2}{3}$
We find that on comparing the corresponding elements of the two matrices, we get two different values of $x$, which is not possible.
Hence, it is not possible to find the values of $\mathrm{x}$ and $\mathrm{y}$ for which the given matrices are equal.
Similar Questions
A manufacturer produces three products $x,\, y,\, z$ which he sells in two markets. Annual sales are indicated below:
Market | $x$ | $y$ | $z$ |
$I$ | $10,000$ | $2,000$ | $18,000$ |
$II$ | $6,000$ | $20,000$ | $8,000$ |
If the unit costs of the above three commodities are $\mathrm{Rs} $. $2.00, $ $\mathrm{Rs} $. $1.00$ and $50$ paise respectively. Find the gross profit.