શ્રેણી $\frac{1}{3}, \frac{1}{9}, \frac{1}{27}, \ldots$. નું કેટલામું પદ $\frac{1}{19683}$ થાય ?

Vedclass pdf generator app on play store
Vedclass iOS app on app store

The given sequence is $\frac{1}{3}, \frac{1}{9}, \frac{1}{27} \dots$

Here, $a=\frac{1}{3}$ and $r=\frac{1}{9} \div \frac{1}{3}=\frac{1}{3}$

Let the $n^{t h}$ term of the given sequence be $\frac{1}{19683}$

$a_{n}=a r^{n-1}$

$\therefore a r^{n-1}=\frac{1}{19683}$

$\Rightarrow\left(\frac{1}{3}\right)\left(\frac{1}{3}\right)^{n-1}=\frac{1}{19683}$

$\Rightarrow\left(\frac{1}{3}\right)^{n}=\left(\frac{1}{3}\right)^{9}$

$\Rightarrow n=9$

Thus, the $9^{\text {th }}$ term of the given sequence is $\frac{1}{19683}$

Similar Questions

$x$ ની કઈ કિંમત માટે $\frac{2}{7}, x,-\frac{7}{2}$ સમગુણોત્તર શ્રેણીમાં થાય ? 

એક માણસ તેના ચાર મિત્રોને પત્ર લખે છે. તે દરેકને સૂચના આપે છે કે આ પત્ર તેમના અન્ય ચાર મિત્રોને મોકલે અને તેમને પણ આ જ પ્રમાણેની સાંકળ આગળ વધારવાની છે. માની લઈએ કે આ સાંકળ તૂટતી નથી અને દરેક પત્ર મોકલવાનો ખર્ચ $50$ પૈસા આવે છે, તો $8$ મી વખત પત્ર મોકલવાનો ખર્ચ શોધો. 

સમગુણોત્તર શ્રેણી $3,3^{2}, 3^{3}$... નાં પ્રથમ કેટલાં પદોનો સરવાળો $120$ થાય ? 

એક સમગુણોત્તર શ્રેણીનું $8$ મું પદ $192$ છે અને સામાન્ય ગુણોત્તર $2$ છે, તો તેનું $12$ મું પદ શોધો.

અનંત સમગુણોત્તર શ્રેણીનું પ્રથમ પદ એ તેના પછીના પદોના સરવાળા કરતાં બમણું હોય, તો સામાન્ય ગુણોત્તર કેટલો હોય ?