9. GRAVITATION
medium

કોઈ પદાર્થનું ચંદ્ર પર વજન પૃથ્વી પરના વજન કરતાં $\frac {1}{6}^{th}$ ભાગનું કેમ હોય છે ?

Option A
Option B
Option C
Option D

Solution

ચંદ્ર પર કોઈ પદાર્થનું વજન એ એવું બળ છે કે જેના દ્વારા ચંદ્ર તે પદાર્થને પોતાના તરફ આકર્ષે છે.

ચંદ્રનું દળ, પૃથ્વીના દળની સાપેક્ષમાં ઓછું છે તેથી આપેલા પદાર્થનું વજન, ચંદ્ર પર, પૃથ્વી પરના વજન કરતાં ઓછું થાય.

ગુરુત્વાકર્ષણના સાર્વત્રિક નિયમ અનુસાર ચંદ્ર પર $m$ દળના પદાર્થનું વજન,

$W_{m}=G \frac{M_{m} \times m}{R_{m}^{2}}$

જ્યાં $M_m = $ ચંદ્રનું દળ, $m =$ પદાર્થનું દળ, $R_m =$ ચંદ્રની ત્રિજ્યા છે, $W_m =$ ચંદ્ર પર તે પદાર્થનું વજન

પૃથ્વી પર $m$ દળના પદાર્થનું વજન,

$W _{e}= G \frac{ M \times m}{ R _{e}^{2}}$

જ્યાં $M =_e$ પૃથ્વીનું દળ, $R_e =$ પૃથ્વીની ત્રિજયા

ગુણોત્તર લેતાં

$\frac{ W _{m}}{ W _{e}}=\frac{ M _{m}}{ M _{e}} \times \frac{ R _{e}^{2}}{ R _{m}^{2}}$

જો પૃથ્વીનું દળ $M_e = 5.98 \times 10^{24}\, kg$ અને ત્રિજ્યા $R_e = 6.37 \times 10^6\, m$ તથા ચંદ્રનું દળ $(M) = 7.36 \times 10^{22}\, kg $ અને ત્રિજયા $R_m = 1.74 \times 10^6\, m$ લઈએ તો 

$\frac{{{W_m}}}{{{W_e}}} = \frac{{7.36 \times {{10}^{22}}}}{{5.98 \times {{10}^{24}}}} \times \frac{{{{\left( {6.37 \times {{10}^6}} \right)}^2}}}{{{{\left( {1.74 \times {{10}^6}} \right)}^2}}}$

$ = 1.23 \times {10^{ – 2}} \times 13.4 = 0.16482$

$ \approx 0.165 = \frac{{165}}{{1000}} \approx \frac{1}{6}$

$\therefore \quad \frac{{{W_m}}}{{{W_e}}} \approx \frac{1}{6}$

$\therefore $ પદાર્થનું ચંદ્ર પર વજન = $\left(\frac{1}{6}\right)$ $\times $ તેનું પૃથ્વી પર વજન

Standard 9
Science

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.