નિશ્ચાયકનું વિસ્તરણ કર્યા સિવાય સાબિત કરો : $\left|\begin{array}{lll}a & a^{2} & b c \\ b & b^{2} & c a \\ c & c^{2} & a b\end{array}\right|=\left|\begin{array}{lll}1 & a^{2} & a^{3} \\ 1 & b^{2} & b^{3} \\ 1 & c^{2} & c^{3}\end{array}\right|$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

$L H S .=\left|\begin{array}{lll}a & a^{2} & b c \\ b & b^{2} & c a \\ c & c^{2} & a b\end{array}\right|$

$=\frac{1}{a b c}\left|\begin{array}{lll}a^{2} & a^{3} & a b c \\ b^{2} & b^{3} & a b c \\ c^{2} & c^{3} & a b c\end{array}\right|$  $\left[R_{1} \rightarrow a R_{1}, R_{2} \rightarrow b R_{2}, \text { and } \mathrm{R}_{3} \rightarrow c R_{3}\right]$

$=\frac{1}{a b c} a b c\left|\begin{array}{lll}a^{2} & a^{3} & 1 \\ b^{2} & b^{3} & 1 \\ c^{2} & c^{3} & 1\end{array}\right| \quad\left[\text { Taking out factor } a b c \text { from } C_{3}\right]$

$=\left|\begin{array}{lll}a^{2} & a^{3} & 1 \\ b^{2} & b^{3} & 1 \\ c^{2} & c^{3} & 1\end{array}\right|$

$=\left|\begin{array}{lll}1 & a^{2} & a^{3} \\ 1 & b^{2} & b^{3} \\ 1 & c^{2} & c^{3}\end{array}\right| \quad\left[\text { Applying } C_{1} \leftrightarrow C_{3} \,a n d\, C_{2} \leftrightarrow C_{3}\right]$

$=\mathrm{R} . \mathrm{H.S}$

Hence, the given result is proved.

Similar Questions

$\left| {\,\begin{array}{*{20}{c}}{a + b}&{b + c}&{c + a}\\{b + c}&{c + a}&{a + b}\\{c + a}&{a + b}&{b + c}\end{array}\,} \right| = K\,\,\left| {\,\begin{array}{*{20}{c}}a&b&c\\b&c&a\\c&a&b\end{array}\,} \right|\,,$ તો $K = $

શૂન્યતર $a$ માટે સમીકરણ $\left| {\begin{array}{*{20}{c}}
{x + a}&x&x\\
x&{x + a}&x\\
x&x&{x + a}
\end{array}} \right| = $ ઉકેલો.

નિશ્ચાયકના ગુણધર્મનો ઉપયોગ કરીને સાબિત કરો : $\left|\begin{array}{ccc}y+k & y & y \\ y & y+k & y \\ y & y & y+k\end{array}\right|=k^{2}(3 x+k)$

 $\left| {\,\begin{array}{*{20}{c}}1&a&{{a^2}}\\{\cos (p - d)x}&{\cos px}&{\cos (p + d)x}\\{\sin (p - d)x}&{\sin px}&{\sin (p + d)x}\end{array}\,} \right|$ ની કિમંત . . .  પર આધારિત નથી.

  • [IIT 1997]

જો $\left| {\,\begin{array}{*{20}{c}}a&b&{a\alpha + b}\\b&c&{b\alpha + c}\\{a\alpha + b}&{b\alpha + c}&0\end{array}\,} \right| = 0$ તો $a,b,c$ એ . . . .શ્રેણીમાં છે .

  • [IIT 1986]