$\Delta PQR$ के शीर्ष $P (2,1), Q (-2,3)$ और $R (4,5)$ हैं। शीर्ष $R$ से जाने वाली माध्यिका का समीकरण ज्ञात कीजिए।

Vedclass pdf generator app on play store
Vedclass iOS app on app store

It is given that the vertices of $\Delta PQR$ are $P (2,1), Q (-2,3)$ and $R (4,5)$.

Let $RL$ be the median through vertex $R$.

Accordingly, $L$ be the mid-point of $PQ$.

By mid-point formula, the coordinates of point $L$ are given by $\left(\frac{2-2}{2}, \frac{1+3}{2}\right)=(0,2)$

It is known that the equation of the line passing through points

$\left(x_{1}, y_{1}\right)=(4,5)$ and $\left(x_{2}, y_{2}\right)=(0,2).$

Hence, $y-5=\frac{2-5}{0-4}(x-4)$

$\Rightarrow y-5=\frac{-3}{-4}(x-4)$

$\Rightarrow 4(y-5)=3(x-4)$

$\Rightarrow 4 y-20=3 x-12$

$\Rightarrow 3 x-4 y+8=0$

Thus, the required equation of the median through vertex $R$ is $3 x-4 y+8=0$.

872-s40

Similar Questions

यदि समद्विबाहु त्रिभुज के आधार के सिरे के शीर्ष $(2a,0)$ व $(0,a)$ हैं व एक भुजा का समीकरण $x = 2a$ है तब त्रिभुज का क्षेत्रफल है

  • [JEE MAIN 2013]

एक सरल रेखा, जो एक अचर बिन्दु $(2,3)$ से होकर जाती है, निर्देशांक अक्षों को दो विभिन्न बिन्दुओं $P$ तथा $Q$ पर प्रतिच्छेद करती है। यदि $O$ मूल बिन्दु है तथा आयत $O P R Q$ को पूरा किया जाता है तो $R$ का बिन्दुपथ है

  • [JEE MAIN 2018]

एक समबाहु त्रिभुज का आधार रेखा $3 x+4 y=9$ के अनुदिश है। यदि त्रिभुज का एक शीर्ष $(1,2)$ है तो त्रिभुज की एक भुजा की लंबाई है

  • [JEE MAIN 2014]

बिन्दुओं $(1, 0)$ व $(2\cos \theta ,2\sin \theta )$ को जोड़ने वाली रेखा को $2 : 3$ के अनुपात में अन्त:विभाजित करने वाले बिन्दु का बिन्दुपथ होगा

  • [IIT 1986]

बिन्दुओं $({a_1},{b_1})$ तथा $({a_2},{b_2})$ से समान दूरी पर स्थित किसी बिन्दु का बिन्दुपथ $({a_1} - {a_2})x + ({b_1} - {b_2})y + c = 0$ है, तब $‘c’$ का मान है

  • [IIT 2003]