$\angle A$ के अन्य सभी त्रिकोणमितीय अनुपातों को $sec A$ के पदों में लिखिए।
We know that,
$\cos A=\frac{1}{\sec A}$
Also, $\sin ^{2} A+\cos ^{2} A=1$
$\sin ^{2} A=1-\cos ^{2} A$
$\sin A=\sqrt{1-\left(\frac{1}{\sec A}\right)^{2}}$
$=\sqrt{\frac{\sec ^{2} A-1}{\sec ^{2} A}}=\frac{\sqrt{\sec ^{2} A-1}}{\sec A}$
$\tan ^{2} A+1=\sec ^{2} A$
$\tan ^{2} A=\sec ^{2} A-1$
$\tan A =\sqrt{\sec ^{2} A -1}$
$\cot A =\frac{\cos A }{\sin A } =\frac{\frac{1}{\sec A}}{\frac{\sqrt{\sec ^{2} A-1}}{\sec A}}$
$=\frac{1}{\sqrt{\sec ^{2} A-1}}$
$\operatorname{cosec} A =\frac{1}{\sin A }=\frac{\sec A }{\sqrt{\sec ^{2} A -1}}$
अनुपातों $\cos A , \tan A$ और $sec A$ को $\sin A$ के पदों में व्यक्त कीजिए।
$\Delta ACB$ लीजिए जिसका कोण $C$ समकोण है जिसमें $AB =29$ इकाई $, BC =21$ इकाई और $\angle ABC =\theta$ $($ देखिए आकृति $)$ हैं तो निम्नलिखित के मान ज्ञात कीजिए।
$(i)$ $\cos ^{2} \theta+\sin ^{2} \theta$
$(ii)$ $\cos ^{2} \theta-\sin ^{2} \theta$.
त्रिकोणमितीय अनुपातों $\sin A , \sec A$ और $tan A$ को $cot A$ के पदों में व्यक्त कीजिए।
दिखाइए कि
$(i)$ $\tan 48^{\circ} \tan 23^{\circ} \tan 42^{\circ} \tan 67^{\circ}=1$
$(ii)$ $\cos 38^{\circ} \cos 52^{\circ}-\sin 38^{\circ} \sin 52^{\circ}=0$
निम्नलिखित के मान निकालिए :
$\frac{\cos 45^{\circ}}{\sec 30^{\circ}+\operatorname{cosec} 30^{\circ}}$